The Mysteries of Mammatus Clouds: Observations and Formation Mechanisms

David M. Schultz Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
,
Katharine M. Kanak Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Katharine M. Kanak in
Current site
Google Scholar
PubMed
Close
,
Jerry M. Straka School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jerry M. Straka in
Current site
Google Scholar
PubMed
Close
,
Robert J. Trapp Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Robert J. Trapp in
Current site
Google Scholar
PubMed
Close
,
Brent A. Gordon NOAA/NWS/NCEP, Camp Springs, Maryland

Search for other papers by Brent A. Gordon in
Current site
Google Scholar
PubMed
Close
,
Dusan S. Zrnić NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Dusan S. Zrnić in
Current site
Google Scholar
PubMed
Close
,
George H. Bryan *National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
,
Adam J. Durant Department of Geological/Mining Engineering & Sciences, Michigan Technological University, Houghton, Michigan

Search for other papers by Adam J. Durant in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Garrett Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Timothy J. Garrett in
Current site
Google Scholar
PubMed
Close
,
Petra M. Klein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petra M. Klein in
Current site
Google Scholar
PubMed
Close
, and
Douglas K. Lilly University of Nebraska at Kearney, Kearney, Nebraska

Search for other papers by Douglas K. Lilly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mammatus clouds are an intriguing enigma of atmospheric fluid dynamics and cloud physics. Most commonly observed on the underside of cumulonimbus anvils, mammatus also occur on the underside of cirrus, cirrocumulus, altocumulus, altostratus, and stratocumulus, as well as in contrails from jet aircraft and pyrocumulus ash clouds from volcanic eruptions. Despite their aesthetic appearance, mammatus have been the subject of few quantitative research studies. Observations of mammatus have been obtained largely through serendipitous opportunities with a single observing system (e.g., aircraft penetrations, visual observations, lidar, radar) or tangential observations from field programs with other objectives. Theories describing mammatus remain untested, as adequate measurements for validation do not exist because of the small distance scales and short time scales of mammatus. Modeling studies of mammatus are virtually nonexistent. As a result, relatively little is known about the environment, formation mechanisms, properties, microphysics, and dynamics of mammatus.

This paper presents a review of mammatus clouds that addresses these mysteries. Previous observations of mammatus and proposed formation mechanisms are discussed. These hypothesized mechanisms are anvil subsidence, subcloud evaporation/sublimation, melting, hydrometeor fallout, cloud-base detrainment instability, radiative effects, gravity waves, Kelvin–Helmholtz instability, Rayleigh–Taylor instability, and Rayleigh–Bénard-like convection. Other issues addressed in this paper include whether mammatus are composed of ice or liquid water hydrometeors, why mammatus are smooth, what controls the temporal and spatial scales and organization of individual mammatus lobes, and what are the properties of volcanic ash clouds that produce mammatus? The similarities and differences between mammatus, virga, stalactites, and reticular clouds are also discussed. Finally, because much still remains to be learned, research opportunities are described for using mammatus as a window into the microphysical, turbulent, and dynamical processes occurring on the underside of clouds.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory/FRDD, Suite 4356, Norman, OK 73072-7326. Email: david.schultz@noaa.gov

Abstract

Mammatus clouds are an intriguing enigma of atmospheric fluid dynamics and cloud physics. Most commonly observed on the underside of cumulonimbus anvils, mammatus also occur on the underside of cirrus, cirrocumulus, altocumulus, altostratus, and stratocumulus, as well as in contrails from jet aircraft and pyrocumulus ash clouds from volcanic eruptions. Despite their aesthetic appearance, mammatus have been the subject of few quantitative research studies. Observations of mammatus have been obtained largely through serendipitous opportunities with a single observing system (e.g., aircraft penetrations, visual observations, lidar, radar) or tangential observations from field programs with other objectives. Theories describing mammatus remain untested, as adequate measurements for validation do not exist because of the small distance scales and short time scales of mammatus. Modeling studies of mammatus are virtually nonexistent. As a result, relatively little is known about the environment, formation mechanisms, properties, microphysics, and dynamics of mammatus.

This paper presents a review of mammatus clouds that addresses these mysteries. Previous observations of mammatus and proposed formation mechanisms are discussed. These hypothesized mechanisms are anvil subsidence, subcloud evaporation/sublimation, melting, hydrometeor fallout, cloud-base detrainment instability, radiative effects, gravity waves, Kelvin–Helmholtz instability, Rayleigh–Taylor instability, and Rayleigh–Bénard-like convection. Other issues addressed in this paper include whether mammatus are composed of ice or liquid water hydrometeors, why mammatus are smooth, what controls the temporal and spatial scales and organization of individual mammatus lobes, and what are the properties of volcanic ash clouds that produce mammatus? The similarities and differences between mammatus, virga, stalactites, and reticular clouds are also discussed. Finally, because much still remains to be learned, research opportunities are described for using mammatus as a window into the microphysical, turbulent, and dynamical processes occurring on the underside of clouds.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory/FRDD, Suite 4356, Norman, OK 73072-7326. Email: david.schultz@noaa.gov

Save
  • Ackerman, T. P., K-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Agee, E. M., 1975: Some inferences of eddy viscosity associated with instabilities in the atmosphere. J. Atmos. Sci., 32 , 642646.

  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52 , 22122226.

    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970a: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48 , 1829.

  • Asai, T., 1970b: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48 , 129139.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1955: The origin of “stalactites” in precipitation echoes. Proc. Fifth Radar Weather Conf., Asbury Park, NJ, U.S. Army Signal Corps, 321–326.

  • Aufm Kampe, H. J., and H. K. Weickmann, 1957: Physics of clouds. Meteorological Research Reviews: Summaries of Progress from 1951 to 1955, Meteor. Monogr., No. 18, Amer. Meteor. Soc., 182–225.

    • Search Google Scholar
    • Export Citation
  • Balachandran, N. K., 1980: Gravity waves from thunderstorms. Mon. Wea. Rev., 108 , 804816.

  • Bauman, G., 1927: Mammato-Formation an Cirren (Mammatus formation on cirrus). Meteor. Z., 44 , 420.

  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59 , 18051824.

    • Search Google Scholar
    • Export Citation
  • Berg, H., 1938: Mammatusbildungen (Mammatus developments). Meteor. Z., 55 , 283287.

  • Berry Jr., F. A., E. Bollay, and N. R. Beers, 1945: Handbook of Meteorology. McGraw-Hill, 1068 pp.

  • Blanchard, D. C., 1996: Serendipity, scientific discovery, and Project Cirrus. Bull. Amer. Meteor. Soc., 77 , 12791286.

  • Bosart, L. F., and F. Sanders, 1991: An early-season coastal storm: Conceptual success and model failure. Mon. Wea. Rev., 119 , 28312851.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. D. Coons, 1947: The “bright line” in radar cloud echoes and its probable explanation. J. Meteor., 4 , 7581.

  • Chandrasekhar, S., 1961: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 654 pp.

  • Clark, T. L., and R. List, 1971: Dynamics of a falling particle zone. J. Atmos. Sci., 28 , 718727.

  • Clarke, R. H., 1962: Pressure oscillations and fallout downdraughts. Quart. J. Roy. Meteor. Soc., 88 , 459469.

  • Clayton, H. H., 1911: A study of clouds with data from kites. Annal. Astron. Observatory Harvard Coll., 68 , 170192.

  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117 , 10571080.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 131147.

  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14 , 95114.

  • Emanuel, K. A., 1981: A similarity theory for unsaturated downdrafts within clouds. J. Atmos. Sci., 38 , 15411557.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fernandez, W., 1982: A review of downdrafts at the rear of tropical squall lines. Bull. Amer. Meteor. Soc., 63 , 12851293.

  • Findeisen, W., 1940: Die Entstehung der 0°-Isothermie und die Fraktocumulus-Bildung unter Nimbostratus (The origin of 0°C isothermal layers and of fractocumulus beneath nimbostratus). Meteor. Z., 57 , 4954.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Fraser, A. B., and C. F. Bohren, 1992: Is virga rain that evaporates before reaching the ground? Mon. Wea. Rev., 120 , 15651571.

  • Fraser, A. B., and C. F. Bohren, 1993: Viewing the vagaries and verities of virga. Mon. Wea. Rev., 121 , 24292430.

  • Garrett, T. J., and Coauthors, 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62 , 23522372.

  • Garrett, T. J., M. A. Zulauf, and S. K. Krueger, 2006: Effects of cirrus near the troposphere on anvil cirrus dynamics. Geophys. Res. Lett., 33 .L17804, doi:10.1029/2006GL027071.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., 1989: Cloud classification before Luke Howard. Bull. Amer. Meteor. Soc., 70 , 381395.

  • Glickman, T. S., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Gordon, B. A., 1995: Structure of precipitation fields in the stratiform region of mesoscale convective systems as observed by polarimetric radar. M.S. thesis, School of Meteorology, University of Oklahoma, 104 pp. [Available from School of Meteorology, University of Oklahoma, 100 East Boyd St., Suite 1310, Norman, OK 73019.].

  • Gordon, B. A., D. S. Zrnić, and J. Straka, 1995: Observations of mammata with polarimetric Doppler radar. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 461–463.

  • Gossard, E. E., 1975: Reply. J. Atmos. Sci., 32 , 639642.

  • Gossard, E. E., and W. B. Sweezy, 1974: Dispersion and spectra of gravity waves in the atmosphere. J. Atmos. Sci., 31 , 15401548.

  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55 , 32643282.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., W. I. Rose, D. J. Schneider, G. J. S. Bluth, and I. M. Watson, 2005: Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001. Geophys. Res. Lett., 32 .L02305, doi: 10.1029/2004GL021651.

    • Search Google Scholar
    • Export Citation
  • Guo, S., W. I. Rose, G. J. S. Bluth, and I. M. Watson, 2004: Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice. Geochem. Geophys. Geosyst., 5 .Q05003, doi:10.1029/2003GC000655.

    • Search Google Scholar
    • Export Citation
  • Harris, F. I., 1977: The effects of evaporation at the base of ice precipitation layers: Theory and radar observations. J. Atmos. Sci., 34 , 651672.

    • Search Google Scholar
    • Export Citation
  • Hartmann, W., 1920: Über die Entstehung von Mamato-Formen (About the origin of mammatusforms). Meteor. Z., 37 , 216220.

  • Heymsfield, A. J., 1986: Ice particle evolution in the anvil of a severe thunderstorm during CCOPE. J. Atmos. Sci., 43 , 24632478.

  • Hlad Jr., C. J., 1944: Stability-tendency and mammatocumulus clouds. Bull. Amer. Meteor. Soc., 25 , 327331.

  • Hobbs, P. V., L. F. Radke, M. W. Eltgroth, and D. A. Hegg, 1981: Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens. Science, 211 , 816818.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. P. Tuell, D. A. Hegg, L. F. Radke, and M. W. Eltgroth, 1982: Particles and gases in the emissions from the 1980–1981 volcanic eruptions of Mt. St. Helens. J. Geophys. Res., 87 , 1106211086.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., L. F. Radke, J. H. Lyons, R. J. Ferek, D. J. Coffman, and T. J. Casadevall, 1991: Airborne measurements of particle and gas emissions from the 1990 volcanic eruptions of Mount Redoubt. J. Geophys. Res., 96 , 1873518752.

    • Search Google Scholar
    • Export Citation
  • Hodge, M. W., 1956: Superadiabatic lapse rates of temperature in radiosonde observations. Mon. Wea. Rev., 84 , 103106.

  • Houze Jr., R. A., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70 , 608619.

    • Search Google Scholar
    • Export Citation
  • Hung, R. J., T. Phan, and R. E. Smith, 1979: Case studies of gravity waves associated with isolated tornadic storms on 13 January 1976. J. Appl. Meteor., 18 , 460466.

    • Search Google Scholar
    • Export Citation
  • Imai, I., 1957: Radar study of a dissipating thunderstorm. Pap. Meteor. Geophys., 8 , 8197.

  • Jeffreys, H., 1928: Some cases of instability in fluid motion. Proc. Roy. Soc. London, 118A , 195208.

  • Jo, I., B. A. Albrecht, and P. Kollias, 2003: 94-GHz Doppler radar observations of mammatus in tropical anvils during CRYSTAL-FACE. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 197–199.

  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15 , 700714.

    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., and J. M. Straka, 2002: An unusual reticular cloud formation. Mon. Wea. Rev., 130 , 416421.

  • Kanak, K. M., and J. M. Straka, 2006: An idealized numerical simulation of mammatus-like clouds. Atmos. Sci. Lett., 7 , 28.

  • Knight, C. A., L. J. Miller, and W. D. Hall, 2004: Deep convection and “first echoes” within anvil precipitation. Mon. Wea. Rev., 132 , 18771890.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., I. Jo, and B. A. Albrecht, 2005: High-resolution observations of mammatus in tropical anvils. Mon. Wea. Rev., 133 , 21052112.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1963: Perturbations of plane Couette flow in stratified fluid and origin of cloud streets. Phys. Fluids, 6 , 195211.

  • Letzmann, J., 1930: Cumulus-Pulsationen (Cumulus pulsations). Meteor. Z., 47 , 236238.

  • Ley, W. C., 1894: Cloudland. Edward Stanford, 208 pp.

  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45 , 15941605.

  • Ludlam, F. H., 1948: The forms of ice clouds. Quart. J. Roy. Meteor. Soc., 74 , 3956.

  • Ludlam, F. H., 1980: Clouds and Storms, the Behavior of Water in the Atmosphere. Pennsylvania State University Press, 405 pp.

  • Ludlam, F. H., and R. S. Scorer, 1953: Convection in the atmosphere. Quart. J. Roy. Meteor. Soc., 79 , 317341.

  • Martner, B. E., 1995: Doppler radar observations of mammatus. Mon. Wea. Rev., 123 , 31153121.

  • Martner, B., 1996: An intimate look at clouds. Weatherwise, 49 , 3. 2023.

  • Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58 , 20732102.

    • Search Google Scholar
    • Export Citation
  • Osthoff, H., 1906: Der Mammato-Cumulus (The mammatocumulus). Meteor. Z., 23 , 401408.

  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53 , 29242951.

    • Search Google Scholar
    • Export Citation
  • Pasquill, F., 1962: Atmospheric Diffusion: The Dispersion of Windborne Material from Industrial and Other Sources. Van Nostrand, 297 pp.

    • Search Google Scholar
    • Export Citation
  • Petre, J. M., and J. Verlinde, 2004: Cloud radar observations of Kelvin–Helmholtz instability in a Florida anvil. Mon. Wea. Rev., 132 , 25202523.

    • Search Google Scholar
    • Export Citation
  • Plank, V. G., D. Atlas, and W. H. Paulsen, 1955: The nature and detectability of clouds and precipitation as determined by 1.25-centimeter radar. J. Meteor., 12 , 358378.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., R. T. Austin, S. A. Young, and A. J. Heymsfield, 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part II: Optical properties and base cooling in dissipating storm anvil clouds. J. Atmos. Sci., 59 , 31633177.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 348 pp.

  • Quante, M., G. Teschke, M. Zhariy, P. Maaß, and K. Sassen, 2002: Extraction and analysis of structural features in cloud radar and lidar data using wavelet based methods. Proc. European Radar Conf., Delft, Netherlands, Eur. Meteor. Soc., 95–103.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Rayleigh, L., 1883: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14 , 170177.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3d ed. Pergamon Press, 293 pp.

  • Rose, W. I., and Coauthors, 1995: Ice in the 1994 Rabaul eruption cloud: Implications for volcano hazard and atmospheric effects. Nature, 375 , 477479.

    • Search Google Scholar
    • Export Citation
  • Rose, W. I., G. J. S. Bluth, D. J. Schneider, G. G. J. Ernst, C. M. Riley, and R. G. McGimsey, 2001: Observations of 1992 Crater Peak/Spurr volcanic clouds in their first few days of atmospheric residence. J. Geol., 109 , 677694.

    • Search Google Scholar
    • Export Citation
  • Rose, W. I., and Coauthors, 2003: The February–March 2000 eruption of Hekla, Iceland from a satellite perspective. Volcanism and the Earth’s Atmosphere, Geophys. Monogr., No. 139, Amer. Geophys. Union, 107–132.

    • Search Google Scholar
    • Export Citation
  • Rose, W. I., G. J. S. Bluth, and I. M. Watson, 2004: Ice in volcanic clouds: When and where? Proc. Second Int. Conf. on Volcanic Ash and Aviation Safety, OFCM, Washington, DC, 27–33.

  • Rust, W. D., R. Davies-Jones, D. W. Burgess, R. A. Maddox, L. C. Showell, T. C. Marshall, and D. K. Lauritsen, 1990: Testing a mobile version of a cross-chain loran atmospheric sounding system (M-CLASS). Bull. Amer. Meteor. Soc., 71 , 173180.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2002: Cirrus clouds: A modern perspective. Cirrus. D. K. Lynch et al., Eds., Oxford University Press, 11–40 (text), 458–468 (figures).

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and S. K. Krueger, 1993: Toward an empirical definition of virga: Comments on “Is virga rain that evaporates before reaching the ground?”. Mon. Wea. Rev., 121 , 24262428.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Coauthors, 1995: The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: Possible influences of volcanic aerosols. J. Atmos. Sci., 52 , 97123.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, Z. Wang, and G. G. Mace, 2001: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., and J. A. Day, 1981: A Field Guide to the Atmosphere. Houghton Mifflin Co., 359 pp.

  • Schlatter, T., 1985: Mammatus clouds, sheltered thermometers. Weatherwise, 38 , 216217.

  • Schmauss, A., 1913: Der Mammatocumulus—Ein Beleuchtungseffekt? (The mammatocumulus—An illumination effect?). Meteor. Z., 30 , 188189.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. J., W. I. Rose, L. R. Coke, G. J. S. Bluth, I. E. Sprod, and A. J. Krueger, 1999: Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J. Geophys. Res., 104 , 40374050.

    • Search Google Scholar
    • Export Citation
  • Schneider, K., 1920: Die Inversion an der Basis von Stratus Mammatus (The inversion at the base of stratus mammatus). Meteor. Z., 37 , 137139.

    • Search Google Scholar
    • Export Citation
  • Schröder, F., and Coauthors, 2000: On the transition of contrails into cirrus clouds. J. Atmos. Sci., 57 , 464480.

  • Schultz, D. M., and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131 , 22222246.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2002: Understanding Utah winter storms: The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc., 83 , 189210.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1958: The dynamics of mamma. Sci. Prog., 46 , 7582.

  • Scorer, R. S., 1972: Clouds of the World. Stackpole Books, 176 pp.

  • Sharp, D. H., 1984: An overview of Rayleigh–Taylor instability. Physica D, 12 , 318.

  • Slonaker, R. L., B. E. Schwartz, and W. J. Emery, 1996: Occurrence of nonsurface superadiabatic lapse rates within RAOB data. Wea. Forecasting, 11 , 350359.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1984: Deep 0°C isothermal layers within precipitation bands over southern Ontario. J. Geophys. Res., 89 , 25672572.

  • Stith, J. L., 1995: In situ measurements and observations of cumulonimbus mamma. Mon. Wea. Rev., 123 , 907914.

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Taylor, G., 1950: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc. London, A201 , 192196.

    • Search Google Scholar
    • Export Citation
  • Troeger, H., 1921: Sonnenring und Stratus Mammatus (Sun ring and stratus mammatus). Das Wetter, 38 , 190.

  • Troeger, H., 1922: Die Häufigkeit der Mammatus-Formen (The frequency of the mammatus). Meteor. Z., 39 , 122123.

  • Wagner, F., 1948: Mammatusform als Anzeichen für Absinkbewegung in Wolkenluft (The shape of mammatus as an indicator for subsidence in cloudy air). Ann. Meteor., 1 , 336340.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and K. Sassen, 2006: Cirrus mammatus properties derived from an extended remote sensing dataset. J. Atmos. Sci., 63 , 712725.

    • Search Google Scholar
    • Export Citation
  • Warner, C., 1973: Measurements of mamma. Weather, 28 , 394397.

  • Wegener, A., 1909: Zur Entstehung des Cumulus Mammatus (About the formation of cumulus mammatus). Meteor. Z., 26 , 473474.

  • Winstead, N. S., J. Verlinde, S. T. Arthur, F. Jaskiewicz, M. Jensen, N. Miles, and D. Nicosia, 2001: High-resolution airborne radar observations of mammatus. Mon. Wea. Rev., 129 , 159166.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Yang, M-J., and R. A. Houze Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123 , 641661.

    • Search Google Scholar
    • Export Citation
  • Zahrai, A., and D. S. Zrnić, 1993: The 10-cm-wavelength polarimetric weather radar at NOAA’s National Severe Storms Laboratory. J. Atmos. Oceanic Technol., 10 , 649662.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32 , 678693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15114 3986 562
PDF Downloads 4636 1020 39