• Arnott, W. P., , Y. Dong, , and J. Hallett, 1994: Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991. J. Geophys. Res., 99 , 13711381.

    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., , M. B. Baker, , and B. D. Swanson, 2003: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129 , 19031927.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., , and J. Hallett, 2004a: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61 , 514544.

  • Bailey, M., , and J. Hallett, 2004b: A new habit diagram and mass parameters for atmospheric ice crystals from −20°C to −70°C. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 1, Bologne, Italy, International Commission of Clouds and Precipitation, 703–706.

  • Baker, B. A., , and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45 , 12821290.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14 , 12241229.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , W. A. Cooper, , and J. E. Dye, 1990: Optical and electronic limitations of the forward-scattering spectrometer probe. Liquid Particle Size Measurements Techniques, ASTM Special Tech. Publ. 1083, Vol. 2, American Society for Testing and Materials, 115–127.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. J. Atmos. Res., 28 , 125152.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., 1989: Coincidence and dead-time corrections for particle counters. Part II: High concentration measurements with an FSSP. J. Atmos. Oceanic Technol., 6 , 585598.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., , G. A. Isaac, , and A. V. Korolev, 2001: Assessing the Rosemount icing detector with in situ measurements. J. Atmos. Oceanic Technol., 18 , 515528.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol., 5 , 823832.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1995: Ice formations in wave clouds: Observed enhancement during evaporation. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 147–152.

  • Durant, A. J., , and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32 .L20814, doi:10.1029/2005GL024175.

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127 , 14931512.

    • Search Google Scholar
    • Export Citation
  • Gayet, J., , G. Febvre, , and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13 , 13001310.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 1968: Nucleation and growth of ice crystals in water and biological systems. Low Temperature Biology of Foodstuffs, J. Hawthorne, Ed., Pergamon Press, 23–52.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50 , 23352353.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60 , 936956.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., , D. L. Mitchell, , W. P. Arnott, , and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. J. Atmos. Res., 59-60 , 89113.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds Their Formation, Optical Properties, and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and G. A. Isaac, 2004: Observation of sublimating ice crystals in clouds. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 2, Bologne, Italy, International Commission of Clouds and Precipitation, 808–811.

  • Korolev, A. V., , J. W. Strapp, , G. A. Isaac, , and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , C. G. Schmitt, , and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , D. O’Connor, , P. Zmarzly, , K. Weaver, , B. A. Baker, , Q. Mo, , and H. Jonsson, 2006a: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23 , 14621477.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , B. Pilson, , and Q. Mo, 2006b: In situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63 , 31863203.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., 7 , 320355.

  • Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements. J. Geophys. Res., 98 , 2067520683.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1997: Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. J. Appl. Meteor., 36 , 633648.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., , A. V. Korolev, , A. Heymsfield, , G. A. Isaac, , and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18 , 529542.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , W. B. Rossow, , A. Macke, , and A. A. Lacis, 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance, and optical thickness retrieval accuracy to ice-particle shape. J. Geophys. Res., 101 , 1697316985.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , R. Zhang, , and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1970: Unusual crystal in ice fog. J. Atmos. Sci., 27 , 509511.

  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26 , 138147.

  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rangno, A. L., , and P. V. Hobbs, 1983: Production of ice particles in clouds due to aircraft penetrations. J. Climate Appl. Meteor., 22 , 214232.

    • Search Google Scholar
    • Export Citation
  • Schlamp, R. J., , H. R. Purppacher, , and A. E. Hamielec, 1975: A numerical investigation of the efficiency with which simple columnar ice crystals collide with supercooled water drops. J. Atmos. Sci., 32 , 23302337.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., , and D. Lamb, 1999: Experimental determination of the thermal accommodation and condensation coefficients of liquid water. J. Chem. Phys., 111 , 1065910663.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., , A. J. Durant, , and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B , 98659868.

    • Search Google Scholar
    • Export Citation
  • Strapp, J., , W. F. Albers, , A. Reuter, , A. V. Korolev, , U. Maixner, , E. Rashke, , and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18 , 1150-1170.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1973: The role of contact nucleation in ice initiation in clouds. J. Atmos. Sci., 31 , 768776.

  • Zikmunda, J., , and B. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29 , 13341347.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 1
PDF Downloads 29 29 1

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part I: Wave Clouds

View More View Less
  • 1 SPEC Inc., Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The microphysical properties of wave clouds based on data collected during 17 missions flown by a Learjet research aircraft are presented and discussed. This extensive dataset expands upon previous aircraft studies of wave clouds and introduces some new findings. While most aspects of the observations are consistent with basic cloud physics, some aspects remain difficult to interpret. Most notable among these are ice nucleation and aspects of the dynamical structure of wave clouds. A new hypothesis to explain the ice nucleation behavior is presented.

The average and standard deviation of bulk microphysical parameters are presented for various locations within the wave clouds. Using digital imagery from a cloud particle imager (CPI), the shapes of ice particles are studied and crystal habits are classified. For certain categories—rosette shapes, columns, and irregular shapes—power-law parameterizations of particle area from particle length are presented. Polycrystals with rosette shapes dominate the ice mass while small spheroidal and irregularly shaped crystals dominate the ice number concentration.

The concept and difficulties of using wave clouds as natural cloud physics laboratories are discussed and evaluated. A study of the riming threshold size of columns is in good agreement with the results of previous studies, showing that column width is the predominate factor in determining riming threshold. The first reported studies of the riming threshold size of rosette shapes and the threshold size for side-plane growth are presented.

Corresponding author address: Brad A. Baker, SPEC Inc., Suite 200, 3022 Sterling Circle, Boulder, CO 80301. Email: brad@specinc.com

Abstract

The microphysical properties of wave clouds based on data collected during 17 missions flown by a Learjet research aircraft are presented and discussed. This extensive dataset expands upon previous aircraft studies of wave clouds and introduces some new findings. While most aspects of the observations are consistent with basic cloud physics, some aspects remain difficult to interpret. Most notable among these are ice nucleation and aspects of the dynamical structure of wave clouds. A new hypothesis to explain the ice nucleation behavior is presented.

The average and standard deviation of bulk microphysical parameters are presented for various locations within the wave clouds. Using digital imagery from a cloud particle imager (CPI), the shapes of ice particles are studied and crystal habits are classified. For certain categories—rosette shapes, columns, and irregular shapes—power-law parameterizations of particle area from particle length are presented. Polycrystals with rosette shapes dominate the ice mass while small spheroidal and irregularly shaped crystals dominate the ice number concentration.

The concept and difficulties of using wave clouds as natural cloud physics laboratories are discussed and evaluated. A study of the riming threshold size of columns is in good agreement with the results of previous studies, showing that column width is the predominate factor in determining riming threshold. The first reported studies of the riming threshold size of rosette shapes and the threshold size for side-plane growth are presented.

Corresponding author address: Brad A. Baker, SPEC Inc., Suite 200, 3022 Sterling Circle, Boulder, CO 80301. Email: brad@specinc.com

Save