• Arnott, W. P., , Y. Dong, , and J. Hallett, 1994: Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991. J. Geophys. Res., 99 , 13711381.

    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., , M. B. Baker, , and B. D. Swanson, 2003: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129 , 19031927.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., , and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61 , 514544.

  • Baker, B. A., , and R. P. Lawson, 2006a: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63 , 31603185.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., , and R. P. Lawson, 2006b: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45 , 12821290.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., , T. Bourrianne, , A. de Araujo Coelho, , J. Isbert, , R. Peytavi, , D. Trevarin, , and P. Wechsler, 1998: Improvements of droplet size distribution measurements with the fast-FSSP. J. Atmos. Oceanic Technol., 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., , C. P. R. Saunders, , M. W. Gallagher, , K. N. Bower, , M. J. Flynn, , T. W. Choularton, , J. Whiteway, , and R. P. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131 , 16951712.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., , and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38 , 12441259.

  • Cotton, R. J., , P. R. Field, , O. Field, , M. Schnaiter, , M. Kraemer, , P. Connolly, , and A. J. Heymsfield, 2004: Parcel modeling of ice nucleation in the Aida aerosol chamber. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 1, Bologne, Italy, International Commission of Clouds and Precipitation, 751–755.

  • Dowling, D. R., , and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29 , 970978.

  • Field, P. R., , R. Wood, , P. R. A. Brown, , P. H. Kaye, , E. Hirst, , R. Greenaway, , and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20 , 249261.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. J. Cotton, , O. Field, , M. Schnaiter, , M. Kramer, , P. Connoll, , and A. J. Heymsfield, 2004: Investigation of the ice nucleation ability of two desert dust aerosol samples at −50°C. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 1, Bologne, Italy, International Commission of Clouds and Precipitation, 78–81.

  • Gayet, J-F., and Coauthors, 2002: Quantitative measurement of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals. Geophys. Res. Lett., 29 , 22302233.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1973: Laboratory and field observations of the growth of columnar and plate crystals from frozen droplets. J. Atmos. Sci., 30 , 16501656.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50 , 23352353.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , S. Lewis, , A. Bansemer, , J. Iaquinta, , L. M. Miloshevich, , M. Kajikawa, , C. Twohy, , and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., , D. L. Mitchell, , W. P. Arnott, , and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. J. Atmos. Res., 59-60 , 89113.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., , and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46 , 31083121.

  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9 , 86103.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds Their Formation, Optical Properties, and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and G. A. Isaac, 2004: Observation of sublimating ice crystals in clouds. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 1, Bologne, Italy, International Commission of Clouds and Precipitation, 808–811.

  • Korolev, A. V., , S. V. Kuznetsov, , Y. E. Makarov, , and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8 , 514522.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , and G. A. Isaac, 1998a: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15 , 708720.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , G. A. Isaac, , and A. N. Nevzorov, 1998b: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., , J. M. Edwards, , and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCM’s. J. Geophys. Res., 105 , 1006310079.

    • Search Google Scholar
    • Export Citation
  • Labonnote, L., , G. Brogniez, , M. Doutriaux-Boucher, , J-C. Buriez, , J-F. Gayet, , and H. Chepfer, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals: Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27 , 113116.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , C. G. Schmitt, , and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , P. Zmarzly, , D. O’Connor, , Q. Mo, , J-F. Gayet, , and V. Shcherbakov, 2006a: Microphysical and optical properties of atmospheric ice crystals at South Pole Station. J. Appl. Meteor. Climatol., 45 , 15051524.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , D. O’Connor, , P. Zmarzly, , K. Weaver, , B. A. Baker, , Q. Mo, , and H. Jonsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23 , 14621477.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Miloshevich, L. M., , and A. H. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol., 14 , 753768.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , W. B. Rossow, , A. Macke, , and A. A. Lacis, 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance, and optical thickness retrieval accuracy to ice-particle shape. J. Geophys. Res., 101 , 1697316985.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , R. Zhang, , and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., , and M. Inoue, 1980: Formation mechanism of ice crystal precipitation in the Antarctic atmosphere. Preprints, Eighth Int. Conf. on Cloud Physics, Vol. 1, Clermont-Ferrand, France, International Commission of Clouds and Precipitation, 221–224.

  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Sassen, K., , J. M. Comstock, , Z. Wang, , and G. Mace, 2001: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., , A. J. Durant, , and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109 , 98659868.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , S-C. Tsay, , P. W. Stackhouse, , and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., , F. Albers, , A. Reuter, , A. V. Korolev, , U. Maixner, , E. Rashke, , and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18 , 11501170.

    • Search Google Scholar
    • Export Citation
  • Ström, J., 2004: Vertical motions at cirrus altitudes. Proc. 14th Int. Conf. on Clouds and Precipitation, Vol. 2, Bologne, Italy, International Commission of Clouds and Precipitation, 1750–1753.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 4
PDF Downloads 41 41 6

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds

View More View Less
  • 1 SPEC Inc., Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A Learjet research aircraft was used to collect microphysical data, including cloud particle imager (CPI) measurements of ice particle size and shape, in 22 midlatitude cirrus clouds. The dataset was collected while the aircraft flew 104 horizontal legs, totaling over 15 000 km in clouds. Cloud temperatures ranged from −28° to −61°C.

The measurements show that cirrus particle size distributions are mostly bimodal, displaying a maximum in number concentration, area, and mass near 30 μm and another smaller maximum near 200–300 μm. CPI images show that particles with rosette shapes, which include mixed-habit rosettes and platelike polycrystals, constitute over 50% of the surface area and mass of ice particles >50 μm in cirrus clouds. Approximately 40% of the remaining mass of ice particles >50 μm are found in irregular shapes, with a few percent each in columns and spheroidal shapes. Plates account for <1% of the total mass. Particles <50 μm account for 99% of the total number concentration, 69% of the shortwave extinction, and 40% of the mass in midlatitude cirrus. Plots and average equations for area versus particle size are shown for various particle habits, and can be used in studies involving radiative transfer.

The average particle concentration in midlatitude cirrus is on the order of 1 cm−3 with occasional 10-km averages exceeding 5 cm−3. There is a strong similarity of microphysical properties of ice particles between wave clouds and cirrus clouds, suggesting that, like wave clouds, cirrus ice particles first experience conversion to liquid water and/or solution drops before freezing.

Corresponding author address: R. Paul Lawson, SPEC Inc., Suite 200, 3022 Sterling Circle, Boulder, CO 80301. Email: plawson@specinc.com

Abstract

A Learjet research aircraft was used to collect microphysical data, including cloud particle imager (CPI) measurements of ice particle size and shape, in 22 midlatitude cirrus clouds. The dataset was collected while the aircraft flew 104 horizontal legs, totaling over 15 000 km in clouds. Cloud temperatures ranged from −28° to −61°C.

The measurements show that cirrus particle size distributions are mostly bimodal, displaying a maximum in number concentration, area, and mass near 30 μm and another smaller maximum near 200–300 μm. CPI images show that particles with rosette shapes, which include mixed-habit rosettes and platelike polycrystals, constitute over 50% of the surface area and mass of ice particles >50 μm in cirrus clouds. Approximately 40% of the remaining mass of ice particles >50 μm are found in irregular shapes, with a few percent each in columns and spheroidal shapes. Plates account for <1% of the total mass. Particles <50 μm account for 99% of the total number concentration, 69% of the shortwave extinction, and 40% of the mass in midlatitude cirrus. Plots and average equations for area versus particle size are shown for various particle habits, and can be used in studies involving radiative transfer.

The average particle concentration in midlatitude cirrus is on the order of 1 cm−3 with occasional 10-km averages exceeding 5 cm−3. There is a strong similarity of microphysical properties of ice particles between wave clouds and cirrus clouds, suggesting that, like wave clouds, cirrus ice particles first experience conversion to liquid water and/or solution drops before freezing.

Corresponding author address: R. Paul Lawson, SPEC Inc., Suite 200, 3022 Sterling Circle, Boulder, CO 80301. Email: plawson@specinc.com

Save