• Allen, S. J., , and R. A. Vincent, 1995: Gravity wave activity in the lower stratosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 , 13271350.

    • Search Google Scholar
    • Export Citation
  • Bartels, J., 1935: Zur Morphologie geophysikalischer Zeitfunktionen. Sitzungsberichte der Preussischen Akadademie der Wissenschaften. Physik.-Math. Klasse, 30 , B4. 504522.

    • Search Google Scholar
    • Export Citation
  • Bartlett, M. S., 1955: An Introduction to Stochastic Processes. Cambridge University Press, 362 pp.

  • Bosart, L. F., , and J. P. J. Cussen, 1973: Gravity wave phenomena accompanying east coast cyclogenesis. Mon. Wea. Rev., 101 , 446454.

  • Bosart, L. F., , W. E. Bracken, , and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Wea. Rev., 126 , 14971527.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92 , 466480.

  • Buss, S., , A. Hertzog, , C. Hostettler, , T. P. Bui, , D. Lüthi, , and H. Wernli, 2004: Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland. Atmos. Chem. Phys., 4 , 11831200.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., , M. Leutbecher, , R. Kivi, , and E. Kyrö, 1999: Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia. Tellus, 51A , 951963.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A non-hydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1984: Inertia-gravity waves in the stratosphere. J. Atmos. Sci., 41 , 33963404.

  • Eckermann, S. D., , and R. A. Vincent, 1989: Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia. Middle Atmosphere, A. R. Plumb and R. A. Vincent, Eds., Birkäuser Basel, 509–532.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 14331636.

  • Fritts, D., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1986: Mesoscale classifications: Their history and their application to forecasting. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 18–35.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Tech. Note, 398, NCAR, Boulder, CO, 122 pp.

  • Hamilton, K., , and R. Vincent, 1998: Gravity wave processes. SPARC implementation plan, WCRP. [Available online at http://www.aero.jussieu.fr/~sparc/SPARCImplementationPlan/3_Processes.html#Anchor-3.4-35326.].

  • Hertzog, A., , F. Vial, , A. Dörnbrack, , S. D. Eckermann, , B. M. Knudsen, , and J-P. Pommereau, 2002: In situ observations of gravity waves and comparisons with numerical simulations during the SOLVE/THESEO 2000 campaign. J. Geophys. Res., 107 .8292, doi:10.1029/2001JD001025.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , M. L. Buker, , G. J. Tripoli, , E. V. Browell, , W. B. Grant, , T. J. McGee, , and J. F. Burris, 2003: Nonorographic generation of Arctic polar stratospheric clouds during December 1999. J. Geophys. Res., 108 .8325, doi:10.1029/2001JD001034.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Holton, J. R., , and M. J. Alexander, 2000: The role of waves in the transport circulation of the middle atmosphere. Atmospheric Science Across the Stratopause, D. Siskind, S. D. Eckermann, and J. R. Holton, Eds., Amer. Geophys. Union, 21–35.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , M. Takahashi, , and T. Tokioka, 2004: Gravity waves around the subtropical jet of the southern winter in an atmospheric general circulation model. Geophys. Res. Lett., 31 .L22109, doi:10.1029/2004GL020794.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 2001: Status report on the predictability of mesoscale gravity waves with numerical weather prediction models. Preprints, Ninth Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor. Soc., 264–268.

  • Koch, S. E., , and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116 , 25702592.

    • Search Google Scholar
    • Export Citation
  • Kühl, S., , A. Dörnbrack, , W. Wilms-Grabe, , B-M. Sinnhuber, , U. Platt, , and T. Wagner, 2004: Observational evidence of rapid chlorine activation by stratospheric mountain waves above Northern Scandinavia. J. Geophys. Res., 109 .D22309, doi:10.1029/2004JD004797.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , J. D. Doyle, , R. Plougonven, , M. A. Shapiro, , and R. D. Sharman, 2004: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61 , 26922706.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., , and H. Volkert, 2000: The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations. J. Atmos. Sci., 57 , 30903108.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117 , 25752583.

  • McIntyre, M. E., 2003: Balanced flow. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Vol. 2, Academic Press, 680–685.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56 , 527530.

  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia-gravity waves in a simulated life cycle of a baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Pecnick, M. J., , and D. Keyser, 1989: The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive equation model. Meteor. Atmos. Phys., 40 , 137149.

    • Search Google Scholar
    • Export Citation
  • Peters, D., , and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Peters, D., , P. Hoffmann, , and M. Alpers, 2003: On the appearance of inertia-gravity waves on the north-easterly side of an anticyclone. Meteor. Z., 12 , 2535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and H. Teitelbaum, 2003: Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes. Geophys. Res. Lett., 30 .1954, doi:10.1029/2003GL017716.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , H. Teitelbaum, , and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108 .4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., , A. Dörnbrack, , S. D. Eckermann, , M. Riese, , B. Schaeler, , J. T. Bacmeister, , D. Broutman, , and K. U. Grossmann, 2002: Space based measurements of stratospheric mountain waves by CRISTA. 1. Sensitivity, analysis method and a case study. J. Geophys. Res., 107 .8178, doi:10.1029/2001JD000699.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., , F-J. Lübken, , A. Müllemann, , G. E. Thomas, , and E. J. Jensen, 2002: Small-scale temperature variations in the vicinity of NLC: Experiments and model results. J. Geophys. Res., 107 .4392, doi:10.1029/2001JD001241.

    • Search Google Scholar
    • Export Citation
  • Schöllhammer, K., 2002: Klimatologie der Schwerewellenaktivität in den mittleren Breiten. Ph.D. thesis, Fachbereich Geowissenschaften, Freie Universität Berlin, Berlin, Germany, 143 pp.

  • Spichtinger, P., , K. Gierens, , and A. Dörnbrack, 2005: Formation of ice supersaturation by mesoscale gravity waves. Atmos. Chem. Phys., 5 , 12431255.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., , P. J. Kushner, , and I. M. Held, 1997: Dynamics of barotropic storm tracks. J. Atmos. Sci., 54 , 791810.

  • Sweschnikow, A. A., 1965: Untersuchungsmethoden der Theorie der Zufallsfunktionen mit praktischen Anwendungen. B.G. Teubner Verlagsgesellschaft, 229 pp.

    • Search Google Scholar
    • Export Citation
  • Taubenheim, J., 1969: Statistische Auswertung Geophysikalischer und Meteorologischer Daten. Geest and Portig, 386 pp.

  • Thomas, L., , R. M. Worthington, , and A. J. McDonald, 1999: Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Ann. Geophys., 17 , 115121.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., , and M. Nishida, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105 , 72577273.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115 , 721729.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , and D. C. Fritts, 1987: A climatology of gravity wave motions in the mesopause reion at Adelaide, Australia. J. Atmos. Sci., 44 , 748760.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , S. J. Allen, , and S. D. Eckermann, 1996: Gravity-wave parameters in the lower stratosphere. Gravity Wave Processes and their Parameterisation in Global Climate, K. Hamilton, Ed., Springer Berlin, 7–25.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wu, D. L., , and F. Zhang, 2004: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109 .D22104, doi:10.1029/2004JD005090.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2001: An improvement of the upper radiative boundary condition. Proc. 11th PSU/NCAR MM5 Users Workshop, Boulder, CO, NCAR Foothills Laboratory, NCAR, 3 pp. [Available online at http://www.mmm.ucar.edu/mm5/workshop/ws01/zaengl1.pdf.].

  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61 , 440457.

  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci., 17 , 165183.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. Wang, , and R. Plougonven, 2004: Uncertainties in using the hodograph method to retrieve gravity wave characteristics from individual soundings. Geophys. Res. Lett., 31 .L11110, doi:10.1029/2004GL019841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 54
PDF Downloads 26 26 14

Simulation of Inertia–Gravity Waves in a Poleward-Breaking Rossby Wave

View More View Less
  • 1 Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany
© Get Permissions
Restricted access

Abstract

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model.

The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately.

With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic.

Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study.

The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.

Corresponding author address: Dr. Christoph Zülicke, Leibniz-Institute of Atmospheric Physics, University of Rostock, Schlossstraße 6, Kühlungsborn D-18225, Germany. Email: zuelicke@iap-kborn.de

Abstract

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model.

The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately.

With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic.

Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study.

The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.

Corresponding author address: Dr. Christoph Zülicke, Leibniz-Institute of Atmospheric Physics, University of Rostock, Schlossstraße 6, Kühlungsborn D-18225, Germany. Email: zuelicke@iap-kborn.de

Save