• Boccaletti, G., , R. C. Pacanowski, , S. G. H. Philander, , and A. V. Federov, 2004: The thermal structure of the upper ocean. J. Phys. Oceanogr., 34 , 888902.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40 , (Suppl.). 3953.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Climate, 19 , 51225174.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , and B. Soden, 2005: The sensitivity of the tropical-mean radiation budget. J. Climate, 18 , 29092923.

  • Clement, A. C., , R. Seager, , and R. Murtugudde, 2005: Why are there tropical warm pools? J. Climate, 18 , 52945311.

  • Cook, K. H., 2003: Role of continents in driving the Hadley cells. J. Atmos. Sci., 60 , 957976.

  • Dima, I. M., , and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60 , 15221527.

  • Fang, M., , and K. K. Tung, 1999: Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56 , 17971807.

  • Ganachaud, A., , and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., , and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Hadley, G., 1735: Concerning the cause of the general trade-winds. Philos. Trans. Roy. Soc. London, 29 , 5862.

  • Hansen, J., , G. Russel, , D. Rind, , P. Stone, , A. Lacis, , S. Lebedeff, , R. Ruedy, , and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Model I and II. Mon. Wea. Rev., 111 , 609662.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and M. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , R. Seager, , M. Cane, , and N. Naik, 2004: How can tropical Pacific Ocean heat transport vary? J. Phys. Oceanogr., 34 , 320333.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58 , 943948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

  • Herweijer, C., , R. Seager, , and M. Winton, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A , 662675.

  • Hoskins, B., , R. Neale, , M. Rodwell, , and G. Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus, 51A , 3344.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., , and R. S. Lindzen, 1992: The influence of concentrated heating on the Hadley circulation. J. Atmos. Sci., 49 , 12331241.

  • Jayne, S. R., , and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385411.

  • Kiehl, J. T., 1998: Simulation of the tropical Pacific warm pool with the NCAR climate system model. J. Climate, 11 , 13421355.

  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the Equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , D. G. Hahn, , and J. L. Holloway Jr., 1979: Climate simulations with GFDL spectral models of the atmosphere: Effect of spectral truncation. Report of the JOC Study Conference on Climate Models: Performance, Intercomparison and Sensitivity Studies, Vol. I, GARP Publ. 22, Global Atmospheric Research Programme, Joint Organizing Committee, WMO, Geneva, Switzerland, 41–94.

  • Mitas, C. M., , and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32 .L03809, doi:10.1029/2004GL021765.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa-Schubert—A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., , and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9 , 27512767.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., , and A. V. Fedorov, 2003: The role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18 .1045, doi:10.1029/2002PA000837.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34 , 280296.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1984: Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J. Atmos. Sci., 41 , 10931115.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1987: A simplified model of the modified Hadley circulation. J. Atmos. Sci., 44 , 33113328.

  • Schneider, E. K., , and R. S. Lindzen, 1977: Axially symmetric steady state models of the basic state of instability and climate studies. Part I: Linearized calculations. J. Atmos. Sci., 34 , 253279.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , D. S. Battisti, , J. Yin, , N. Gordon, , N. Naik, , A. C. Clement, , and M. A. Cane, 2002: Is the Gulf Stream responsible for Europe’s mild winters? Quart. J. Roy. Meteor. Soc., 128 , 25632586.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , R. Murtugudde, , A. C. Clement, , and C. Herweijer, 2003: Why is there an evaporation minimum at the equator? J. Climate, 16 , 37923801.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transport. J. Climate, 14 , 34333443.

  • Trenberth, K. E., , and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16 , 37053721.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , D. P. Stepaniak, , and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13 , 39693993.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , Z. Shi, , J. R. Lanzante, , and A. H. Oort, 1999: The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in situ estimates. Climate Dyn., 15 , 719735.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., , and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32 .L06813, doi:10.1029/2004GL022304.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., , and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63 , 33333350.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16 , 28752889.

  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., , and K. Saito, 2001: Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: Continental forcing and ocean–atmospheric feedback. J. Climate, 14 , 12621276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 69
PDF Downloads 46 46 22

The Role of the Ocean in the Seasonal Cycle of the Hadley Circulation

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

The influence of ocean heat transport on the seasonal cycle of the Hadley circulation is investigated using idealized experiments with a climate model. It is found that ocean heat transport plays a fundamental role in setting the structure and intensity of the seasonal Hadley cells. The ocean’s influence can be understood primarily via annual mean considerations. By cooling the equatorial regions and warming the subtropics in a year-round sense, the ocean heat transport allows for regions of SST maxima to occur off the equator in the summer hemisphere. This leads to large meridional excursions of convection over the ocean and a seasonal Hadley circulation that is strongly asymmetric about the equator. The broadening of the latitudinal extent of the SST maximum and the convecting regions by the ocean heat transport also weakens the annual mean Hadley circulation in a manner that is consistent with simpler models. The results are discussed in the context of prior studies of the controls on the strength and structure of the Hadley circulation. It is suggested that a complete understanding of the seasonal Hadley circulation must include both oceanic and atmospheric processes and their interactions.

Corresponding author address: Dr. Amy Clement, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aclement@rsmas.miami.edu

Abstract

The influence of ocean heat transport on the seasonal cycle of the Hadley circulation is investigated using idealized experiments with a climate model. It is found that ocean heat transport plays a fundamental role in setting the structure and intensity of the seasonal Hadley cells. The ocean’s influence can be understood primarily via annual mean considerations. By cooling the equatorial regions and warming the subtropics in a year-round sense, the ocean heat transport allows for regions of SST maxima to occur off the equator in the summer hemisphere. This leads to large meridional excursions of convection over the ocean and a seasonal Hadley circulation that is strongly asymmetric about the equator. The broadening of the latitudinal extent of the SST maximum and the convecting regions by the ocean heat transport also weakens the annual mean Hadley circulation in a manner that is consistent with simpler models. The results are discussed in the context of prior studies of the controls on the strength and structure of the Hadley circulation. It is suggested that a complete understanding of the seasonal Hadley circulation must include both oceanic and atmospheric processes and their interactions.

Corresponding author address: Dr. Amy Clement, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aclement@rsmas.miami.edu

Save