• Betts, A. K., 1986: A new convective adjustment scheme: Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1997: The parameterization of deep convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 505, Kluwer Academic, 255–279.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., , J. S. Kain, , and M. E. Baldwin, 2005: Bowing convective systems in a popular operational model: Are they for real? Extended Abstracts, 21st Conf. on Weather Analysis and Forecasting/Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., CD-ROM, 2A.1.

  • Carbone, R. E., , J. D. Tuttle, , D. Ahijevych, , and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , K. W. Manning, , R. E. Carbone, , S. B. Trier, , and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users Workshop, Boulder, CO, PSU/NCAR, 49–50. [Available online at http://www.mmm.ucar.edu/mm5/mm5v2/whatisnewinv2.html.].

  • Dudhia, J., , and M. W. Moncrieff, 1989: Three-dimensional simulation of an Oklahoma squall line with right-flank supercells. J. Atmos. Sci., 46 , 33633391.

    • Search Google Scholar
    • Export Citation
  • Gallus Jr., W. A., 1999: Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Wea. Forecasting, 14 , 405426.

    • Search Google Scholar
    • Export Citation
  • Gallus Jr., W. A., 2002: Impact of verification grid-box size on warm-season QPF skill measures. Wea. Forecasting, 17 , 12961302.

  • Gallus Jr., W. A., , and R. H. Johnson, 1992: The momentum budget of an intense midlatitude squall line. J. Atmos. Sci., 49 , 422450.

  • Gallus Jr., W. A., , and M. Segal, 2001: Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Wea. Forecasting, 16 , 680696.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2001: Largescale organization of tropical convection in two dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., , and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Houze Jr., R. A., , M. I. Biggerstaff, , S. A. Rutledge, , and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70 , 608619.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-M., , M. W. Moncrieff, , W-W. Tung, , and C. Liu, 2006: Multiscale temporal variability of warm-season precipitation over North America: Statistical analysis of radar measurements. J. Atmos. Sci., 63 , 23552368.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112 , 15901601.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritisch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Knievel, J. C., , D. A. Ahijevych, , and K. W. Manning, 2004: Using temporal modes of rainfall to evaluate the performance of a numerical weather prediction model. Mon. Wea. Rev., 132 , 29953009.

    • Search Google Scholar
    • Export Citation
  • Lafore, J-L., , and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of a tropical squall line. J. Atmos. Sci., 46 , 521544.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., , and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123 , 27562776.

    • Search Google Scholar
    • Export Citation
  • LeMore, M. A., , and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51 , 281305.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , M. W. Moncrieff, , and W. W. Grabowski, 2001a: Explicit and parameterized realizations of convective cloud systems in TOGA COARE. Mon. Wea. Rev., 129 , 16891703.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , M. W. Moncrieff, , and W. W. Grabowski, 2001b: Hierarchical modeling of tropical convective systems using resolved and parameterized approaches. Quart. J. Roy. Meteor. Soc., 127 , 493515.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , M. W. Moncrieff, , J. D. Tuttle, , and R. E. Carbone, 2005: Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1980: Clouds and Storms: The Behavior and Effect of Water in the Atmosphere. The Pennsylvania State University Press, 405 pp.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107 , 2950.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118 , 819850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1997: Momentum transport by organized convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 505, Kluwer Academic, 231–253.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and E. Klinker, 1997: Mesoscale cloud systems in the tropical Western Pacific as a process in general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 805827.

    • Search Google Scholar
    • Export Citation
  • Naveau, P., , and M. W. Moncrieff, 2003: A probabilistic description of convective mass fluxes and its relationship to extreme-value theory. Quart. J. Roy. Meteor. Soc., 129 , 22172232.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , E. J. Zipser, , and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., , and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53 , 29242951.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., , and J-P. Lafore, 1988: A three dimensional simulation of a tropical squall line: Convective organization and thermodynamic vertical transport. J. Atmos. Sci., 45 , 13341356.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Smith, R. K., 1997: The Physics and Parameterization of Moist Atmospheric Convection. NATO ASI Series C: Mathematical and Physical Sciences, Vol. 505, Kluwer Academic, 498 pp.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122 , 20842104.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , C-H. Sui, , B. Ferrier, , S. Lang, , J. Scala, , M-D. Chou, , and K. Pickering, 1993: Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasumo, , and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 .L089805, doi:10.1029/2005GLK022459.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , C. A. Davis, , D. A. Ahijevych, , M. L. Weisman, , and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63 , 24372461.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1989: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117 , 305328.

    • Search Google Scholar
    • Export Citation
  • WCRP, 1999: COARE-98: Proceedings of a Conference on the TOGA Coupled Ocean-Atmosphere Response Experiment (COARE). WCRP-107, WMO Tech. Doc. 940, 416 pp.

  • Weisman, M. L., , W. C. Skamarock, , and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J. Chu, 1973: Determination of the bulk properties of tropical cloud clusters from large-heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, M-J., , and R. A. Houze Jr., 1996: Momentum budget of a squall line with trailing stratiform precipitation: Calculations with a high-resolution numerical model. J. Atmos. Sci., 53 , 36293652.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-A., , E-Y. Hsie, , and M. W. Moncrieff, 1988: A comparison of explicit and implicit predictions of convective and stratiform precipitating weather systems with a meso-β-scale numerical model. Quart. J. Roy. Meteor. Soc., 114 , 3160.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 5
PDF Downloads 27 27 5

Representing Convective Organization in Prediction Models by a Hybrid Strategy

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The mesoscale organization of precipitating convection is highly relevant to next-generation global numerical weather prediction models, which will have an intermediate horizontal resolution (grid spacing about 10 km). A primary issue is how to represent dynamical mechanisms that are conspicuously absent from contemporary convective parameterizations. A hybrid parameterization of mesoscale convection is developed, consisting of convective parameterization and explicit convectively driven circulations.

This kind of problem is addressed for warm-season convection over the continental United States, although it is argued to have more general application. A hierarchical strategy is adopted: cloud-system-resolving model simulations represent the mesoscale dynamics of convective organization explicitly and intermediate resolution simulations involve the hybrid approach. Numerically simulated systems are physically interpreted by a mechanistic dynamical model of organized propagating convection. This model is a formal basis for approximating mesoscale convective organization (stratiform heating and mesoscale downdraft) by a first-baroclinic heating couplet.

The hybrid strategy is implemented using a predictor–corrector strategy. Explicit dynamics is the predictor and the first-baroclinic heating couplet the corrector. The corrector strengthens the systematically weak mesoscale downdrafts that occur at intermediate resolution. When introduced to the Betts–Miller–Janjic convective parameterization, this new hybrid approach represents the propagation and dynamical structure of organized precipitating systems. Therefore, the predictor–corrector hybrid approach is an elementary practical framework for representing organized convection in models of intermediate resolution.

Corresponding author address: Mitchell W. Moncrieff, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: moncrief@ucar.edu

Abstract

The mesoscale organization of precipitating convection is highly relevant to next-generation global numerical weather prediction models, which will have an intermediate horizontal resolution (grid spacing about 10 km). A primary issue is how to represent dynamical mechanisms that are conspicuously absent from contemporary convective parameterizations. A hybrid parameterization of mesoscale convection is developed, consisting of convective parameterization and explicit convectively driven circulations.

This kind of problem is addressed for warm-season convection over the continental United States, although it is argued to have more general application. A hierarchical strategy is adopted: cloud-system-resolving model simulations represent the mesoscale dynamics of convective organization explicitly and intermediate resolution simulations involve the hybrid approach. Numerically simulated systems are physically interpreted by a mechanistic dynamical model of organized propagating convection. This model is a formal basis for approximating mesoscale convective organization (stratiform heating and mesoscale downdraft) by a first-baroclinic heating couplet.

The hybrid strategy is implemented using a predictor–corrector strategy. Explicit dynamics is the predictor and the first-baroclinic heating couplet the corrector. The corrector strengthens the systematically weak mesoscale downdrafts that occur at intermediate resolution. When introduced to the Betts–Miller–Janjic convective parameterization, this new hybrid approach represents the propagation and dynamical structure of organized precipitating systems. Therefore, the predictor–corrector hybrid approach is an elementary practical framework for representing organized convection in models of intermediate resolution.

Corresponding author address: Mitchell W. Moncrieff, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: moncrief@ucar.edu

Save