• Becker, E., , G. Schmitz, , and R. Geprägs, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49A , 182199.

    • Search Google Scholar
    • Export Citation
  • Bourke, W., 1974: A multi-level spectral model. I. Formulation and hemispheric integration. Mon. Wea. Rev., 102 , 687701.

  • Dickinson, R. E., 1971: Analytic model for zonal winds in the Tropics. I. Details of the model and simulation of gross features of the zonal mean troposphere. Mon. Wea. Rev., 99 , 501510.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60 , 15221527.

  • Haberle, R. M., , J. B. Pollack, , J. R. Barnes, , R. W. Zurek, , C. B. Leovy, , J. R. Murphy, , H. Lee, , and J. Schaeffer, 1993: Mars atmospheric dynamics as simulated by the NASA Ames general circulation model. 1. The zonal-mean circulation. J. Geophys. Res., 98 , 30933123.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., cited. 2000: The general circulation of the atmosphere. Proc. Program in Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanographic Institution. [Available online at www.gfd.whoi.edu/proceedings/2000/PDFvol2000.html.].

  • Held, I. M., , and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26 , 841853.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., , A. Simmons, , S. Uppala, , and M. Fuentes, 2004: The ERA-40 archive. ECMWF Tech. Rep., European Centre for Medium-Range Weather Forecasts, 31 pp. [Available online at www.ecmwf.int/publications.].

  • Kim, H-K., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58 , 28592871.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , and E. K. Schneider, 2000: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci., 57 , 20802093.

    • Search Google Scholar
    • Export Citation
  • Koh, T-Y., , and R. A. Plumb, 2004: Isentropic zonal average formulation and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130 , 16311654.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R-S., , and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., , and G. Boccaletti, 2002: Numerical general circulation experiments of sensitivity to Earth rotation rate. Climate Dyn., 19 , 467483.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2004: Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci., 61 , 11611173.

  • Plumb, R. A., , and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49 , 17901799.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and A. H. Sobel, 2002: The Hadley circulation and the weak temperature gradient approximation. J. Atmos. Sci., 59 , 17441752.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34 , 280296.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1983: Martian great dust storms: Interpretive axially symmetric models. Icarus, 55 , 302331.

  • Schneider, E. K., 1984: Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J. Atmos. Sci., 41 , 10931115.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and R. S. Lindzen, 1976: The influence of stable stratification on the thermally driven tropical boundary layer. J. Atmos. Sci., 33 , 13011307.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and R. S. Lindzen, 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized calculations. J. Atmos. Sci., 34 , 263279.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62 , 18841900.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34 , 655688.

  • Schneider, T., , and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Walker, C. C., , and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32 .L06813, doi:10.1029/2004GL022304.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1988a: The dynamical range of global circulations— I. Climate Dyn., 2 , 205260.

  • Williams, G. P., 1988b: The dynamical range of global circulations—II. Climate Dyn., 3 , 4584.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 189 31
PDF Downloads 106 106 30

Eddy Influences on Hadley Circulations: Simulations with an Idealized GCM

View More View Less
  • 1 California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

An idealized GCM is used to investigate how the strength and meridional extent of the Hadley circulation depend on the planet radius, rotation rate, and thermal driving. Over wide parameter ranges, the strength and meridional extent of the Hadley circulation display clear scaling relations with regime transitions, which are not predicted by existing theories of axisymmetric Hadley circulations. For example, the scaling of the strength as a function of the radiative-equilibrium equator-to-pole temperature contrast exhibits a regime transition corresponding to a regime transition in scaling laws of baroclinic eddy fluxes. The scaling of the strength of the cross-equatorial Hadley cell as a function of the latitude of maximum radiative-equilibrium temperature exhibits a regime transition from a regime in which eddy momentum fluxes strongly influence the strength to a regime in which the influence of eddy momentum fluxes is weak.

Over a wide range of flow parameters, albeit not always, the Hadley circulation strength is directly related to the eddy momentum flux divergence at the latitude of the streamfunction extremum. Simulations with hemispherically symmetric thermal driving span circulations with local Rossby numbers in the horizontal upper branch of the Hadley circulation between 0.1 and 0.8, indicating that neither nonlinear nearly inviscid theories, valid for Ro → 1, nor linear theories, valid for Ro → 0, of axisymmetric Hadley circulations can be expected to be generally adequate. Nonlinear theories of axisymmetric Hadley circulations may account for aspects of the circulation when the maximum radiative-equilibrium temperature is displaced sufficiently far away from the equator, which results in cross-equatorial Hadley cells with nearly angular momentum-conserving upper branches.

The dependence of the Hadley circulation on eddy fluxes, which are themselves dependent on extratropical circulation characteristics such as meridional temperature gradients, suggests that tropical circulations depend on the extratropical climate.

* Current affiliation: Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@caltech.edu

Abstract

An idealized GCM is used to investigate how the strength and meridional extent of the Hadley circulation depend on the planet radius, rotation rate, and thermal driving. Over wide parameter ranges, the strength and meridional extent of the Hadley circulation display clear scaling relations with regime transitions, which are not predicted by existing theories of axisymmetric Hadley circulations. For example, the scaling of the strength as a function of the radiative-equilibrium equator-to-pole temperature contrast exhibits a regime transition corresponding to a regime transition in scaling laws of baroclinic eddy fluxes. The scaling of the strength of the cross-equatorial Hadley cell as a function of the latitude of maximum radiative-equilibrium temperature exhibits a regime transition from a regime in which eddy momentum fluxes strongly influence the strength to a regime in which the influence of eddy momentum fluxes is weak.

Over a wide range of flow parameters, albeit not always, the Hadley circulation strength is directly related to the eddy momentum flux divergence at the latitude of the streamfunction extremum. Simulations with hemispherically symmetric thermal driving span circulations with local Rossby numbers in the horizontal upper branch of the Hadley circulation between 0.1 and 0.8, indicating that neither nonlinear nearly inviscid theories, valid for Ro → 1, nor linear theories, valid for Ro → 0, of axisymmetric Hadley circulations can be expected to be generally adequate. Nonlinear theories of axisymmetric Hadley circulations may account for aspects of the circulation when the maximum radiative-equilibrium temperature is displaced sufficiently far away from the equator, which results in cross-equatorial Hadley cells with nearly angular momentum-conserving upper branches.

The dependence of the Hadley circulation on eddy fluxes, which are themselves dependent on extratropical circulation characteristics such as meridional temperature gradients, suggests that tropical circulations depend on the extratropical climate.

* Current affiliation: Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@caltech.edu

Save