• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Belton, M. J. S., , G. R. Smith, , G. Schubert, , and A. D. Del Genio, 1976: Cloud patterns, waves and convection in the Venus atmosphere. J. Atmos. Sci., 33 , 13941417.

    • Search Google Scholar
    • Export Citation
  • Covey, C., , and G. Schubert, 1981: 4-day waves in the Venus atmosphere. Icarus, 47 , 130138.

  • Covey, C., , and G. Schubert, 1982: Planetary-scale waves in the Venus atmosphere. J. Atmos. Sci., 39 , 23972413.

  • Covey, C., , R. L. Walterscheid, , and G. Schubert, 1986: Dissipative tides: Application to Venus’ lower atmosphere. J. Atmos. Sci., 43 , 32733278.

    • Search Google Scholar
    • Export Citation
  • Crisp, D., 1989: Radiative forcing of the Venus mesosphere. II Thermal fluxes, cooling rates, and radiative equilibrium temperature. Icarus, 77 , 391413.

    • Search Google Scholar
    • Export Citation
  • Crisp, D., and Coauthors, 1991: Ground-based near-infrared imaging observations of Venus during the Galileo encounter. Science, 253 , 15381541.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , and W. B. Rossow, 1990: Planetary-scale wave and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci., 47 , 293318.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , and W. Zhou, 1996: Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus, 120 , 332343.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , W. Zhou, , and T. P. Eichler, 1993: Equatorial superrotation in a slowly rotating GCM: Implications for Titan and Venus. Icarus, 101 , 117.

    • Search Google Scholar
    • Export Citation
  • Elson, L. S., 1978: Barotropic instability in the upper atmosphere of Venus. Geophys. Res. Lett., 5 , 603605.

  • Elson, L. S., 1983: Solar related waves in the Venusian atmosphere from the cloud tops to 100 km. J. Atmos. Sci., 40 , 15351551.

  • Fels, S. B., , and R. S. Lindzen, 1974: The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn., 6 , 149191.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., 1975: Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32 , 10381044.

  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26 , 841853.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., , and B. F. Farrell, 1987: Superrotation induced by critical-level absorption of gravity waves on Venus: An assessment. J. Atmos. Sci., 44 , 10491061.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., , and R. M. Goody, 1989: Further studies of the circulation of the Venus atmosphere. J. Atmos. Sci., 46 , 9911001.

  • Iga, S., , and Y. Matsuda, 2005: Shear instability in a shallow water model with implication for the Venus atmosphere. J. Atmos. Sci., 62 , 25142527.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., , and R. Young, 2002: Is the mean Venusian tropospheric circulation unsteady? Geophys. Res. Lett., 29 .1062, doi:10.1029/2001GL013979.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1966: On the theory of the diurnal tide. Mon. Wea. Rev., 94 , 295301.

  • Matsuda, Y., 1980: Dynamics of the four-day circulation in the Venus atmosphere. J. Meteor. Soc. Japan, 58 , 443470.

  • Matsuda, Y., 1982: A further study of dynamics of the four-day circulation in the Venus atmosphere. J. Meteor. Soc. Japan, 60 , 245254.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , and C. B. Leovy, 1992: Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides. Science, 257 , 647650.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , M. Takahashi, , T. Nakajima, , and A. Sumi, 1995: Development of an atmospheric general circulation model. Climate System Dynamics and Modelling, T. Matsuno, Ed., Vol. I-3, CCSR, 1–27.

    • Search Google Scholar
    • Export Citation
  • Pechmann, J. B., , and A. P. Ingersoll, 1984: Thermal tides in the atmosphere of Venus: Comparison of model results with observations. J. Atmos. Sci., 41 , 32903313.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., 1983: A general circulation model of a Venus-like atmosphere. J. Atmos. Sci., 40 , 273302.

  • Rossow, W. B., , and G. P. Williams, 1979: Large-scale motion in the Venus stratosphere. J. Atmos. Sci., 36 , 377389.

  • Rossow, W. B., , A. D. Del Genio, , S. S. Limaye, , L. D. Travis, , and P. H. Stone, 1980: Cloud morphology and motions from Pioneer Venus images. J. Geophys. Res., 85 , 81078128.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , A. D. Del Genio, , and T. Eichler, 1990: Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci., 47 , 20532084.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., 1981: An investigation of shear instability in a shallow water. J. Meteor. Soc. Japan, 59 , 148167.

  • Schofield, J. T., , and F. W. Taylor, 1983: Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Quart. J. Roy. Meteor. Soc., 109 , 5780.

    • Search Google Scholar
    • Export Citation
  • Schubert, G., , and J. A. Whitehead, 1969: Moving flame experiment with liquid mercury: Possible implications for the Venus atmosphere. Science, 163 , 7172.

    • Search Google Scholar
    • Export Citation
  • Schubert, G., and Coauthors, 1980: Structure and circulation of the Venus atmosphere. J. Geophys. Res., 85 , 80078025.

  • Smith, M. D., , P. J. Gierasch, , and P. J. Schinder, 1992: A global traveling wave on Venus. Science, 256 , 652655.

  • Smith, M. D., , P. J. Gierasch, , and P. J. Schinder, 1993: Global-scale waves in the Venus atmosphere. J. Atmos. Sci., 50 , 40804096.

  • Takagi, M., , and Y. Matsuda, 2005: Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling. Geophys. Res. Lett., 32 .L02203, doi:10.1029/2004GL022060.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., 2001: Blocky markings and planetary-scale waves in the equatorial cloud layer of Venus. J. Atmos. Sci., 58 , 365375.

  • Yamamoto, M., , and H. Tanaka, 1997: Formation and maintenance of the 4-day circulation in the Venus middle atmosphere. J. Atmos. Sci., 54 , 14721489.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., , and M. Takahashi, 2003a: The fully developed superrotation simulated by a general circulation model of a Venus-like atmosphere. J. Atmos. Sci., 60 , 561574.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., , and M. Takahashi, 2003b: Superrotation and equatorial waves in a T21 Venus-like AGCM. Geophys. Res. Lett., 30 .1449, doi:10.1029/2003GL016924.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., , and M. Takahashi, 2003c: Atmospheric general circulation model of Venus’ atmosphere (in Japanese). Planetary People, 12 , 242247.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., , and M. Takahashi, 2004: Dynamics of Venus’ superrotation: The eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett., 31 .L09701, doi:10.1029/2004GL019518.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., , and H. Tanaka, 2006: Are geostrophic and quasigeostrophic approximations valid in Venus’ differential superrotation? Geophys. Astrophys. Fluid Dyn., 100 , 185195.

    • Search Google Scholar
    • Export Citation
  • Young, R. E., , and J. B. Pollack, 1977: A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci., 34 , 13151351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 11
PDF Downloads 33 33 10

Superrotation Maintained by Meridional Circulation and Waves in a Venus-Like AGCM

View More View Less
  • 1 Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan
  • 2 Center for Climate System Research, University of Tokyo, Kashiwa, Japan
© Get Permissions
Restricted access

Abstract

Fully developed superrotation—60 times faster than the planetary rotation (243 days)—is simulated using a Venus-like atmospheric general circulation model (AGCM). The angular momentum of the superrotation is pumped up by the meridional circulation with the help of waves, which accelerate the equatorial zonal flow. The waves generated by solar heating and shear instability play a crucial role in the atmospheric dynamics of the Venusian superrotation. Vertical and horizontal momentum transports of thermal tides maintain the equatorial superrotation in the middle atmosphere, while equatorward eddy momentum flux due to shear instability raises the efficiency of upward angular momentum transport by the meridional circulation in the lower atmosphere. In addition to the superrotation, some waves simulated in the cloud layer are consistent with the observations. The planetary-scale Kelvin wave identified as the near-infrared (NIR) oscillation with periods of 5–6 days is generated by the shear instability near the cloud base, and the temperature structure of the diurnal tide is similar to the infrared (IR) observation near the cloud top.

Sensitivities to the bottom boundary conditions are also examined in this paper, since the surface physical processes are still unknown. The decrease of the equator–pole temperature difference and the increase of the surface frictional time constant result in the weaknesses of the meridional circulation and superrotation. In the cases of the weak superrotation, the vertical angular momentum transport due to the meridional circulation is inefficient and the equatorward eddy angular momentum transport is absent near 60-km altitude.

Corresponding author address: Masaru Yamamoto, Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan. Email: yamakatu@riam.kyushu-u.ac.jp

Abstract

Fully developed superrotation—60 times faster than the planetary rotation (243 days)—is simulated using a Venus-like atmospheric general circulation model (AGCM). The angular momentum of the superrotation is pumped up by the meridional circulation with the help of waves, which accelerate the equatorial zonal flow. The waves generated by solar heating and shear instability play a crucial role in the atmospheric dynamics of the Venusian superrotation. Vertical and horizontal momentum transports of thermal tides maintain the equatorial superrotation in the middle atmosphere, while equatorward eddy momentum flux due to shear instability raises the efficiency of upward angular momentum transport by the meridional circulation in the lower atmosphere. In addition to the superrotation, some waves simulated in the cloud layer are consistent with the observations. The planetary-scale Kelvin wave identified as the near-infrared (NIR) oscillation with periods of 5–6 days is generated by the shear instability near the cloud base, and the temperature structure of the diurnal tide is similar to the infrared (IR) observation near the cloud top.

Sensitivities to the bottom boundary conditions are also examined in this paper, since the surface physical processes are still unknown. The decrease of the equator–pole temperature difference and the increase of the surface frictional time constant result in the weaknesses of the meridional circulation and superrotation. In the cases of the weak superrotation, the vertical angular momentum transport due to the meridional circulation is inefficient and the equatorward eddy angular momentum transport is absent near 60-km altitude.

Corresponding author address: Masaru Yamamoto, Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan. Email: yamakatu@riam.kyushu-u.ac.jp

Save