Association of Tropical Cirrus in the 10–15-km Layer with Deep Convective Sources: An Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories

Gerald G. Mace University of Utah, Salt Lake City, Utah

Search for other papers by Gerald G. Mace in
Current site
Google Scholar
PubMed
Close
,
Min Deng University of Utah, Salt Lake City, Utah

Search for other papers by Min Deng in
Current site
Google Scholar
PubMed
Close
,
Brian Soden Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Brian Soden in
Current site
Google Scholar
PubMed
Close
, and
Ed Zipser University of Utah, Salt Lake City, Utah

Search for other papers by Ed Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, millimeter cloud radar (MMCR) and Geosynchronous Meteorological Satellite (GMS) data are combined to study the properties of tropical cirrus that are common in the 10–15-km layer of the tropical troposphere in the western Pacific. Millimeter cloud radar observations collected by the Atmospheric Radiation Measurement program on the islands of Manus and Nauru in the western and central equatorial Pacific during a 12-month period spanning 1999 and 2000 show differences in cirrus properties: over Manus, where clouds above 7 km are observed 48% of the time, the cirrus are thicker and warmer on average and the radar reflectivity and Doppler velocity are larger; over Nauru clouds above 7 km are observed 23% of time. To explain the differences in cloud properties, the relationship between tropical cirrus and deep convection is examined by combining the radar observations with GMS satellite-derived back trajectories. Using a data record of 1 yr, it is found that 47% of the cirrus observed over Manus can be traced to a deep convective source within the past 12 h while just 16% of the cirrus observed over Nauru appear to have a convective source within the previous 12 h. Of the cirrus that can be traced to deep convection, the evolution of the radar-observed cloud properties is examined as a function of apparent cloud age. The radar Doppler moments and ice water path of the observed cirrus at both sites generally decrease as the cirrus age increase. At Manus, it is found that cirrus during boreal winter typically advect over the site from the southeast from convection associated with the winter monsoon, while during boreal summer, the trajectories are mainly from the northeast. The properties of these two populations of cirrus are found to be different, with the winter cirrus having higher concentrations of smaller particles. Examining statistics of the regional convection using Tropical Rainfall Measuring Mission (TRMM), it is found that the properties of the winter monsoon convection in the cirrus source region are consistent with more intense convection compared to the convection in the summer source region.

Corresponding author address: Gerald G. Mace, Dept. of Meteorology, University of Utah, 135 S 1460 E, Rm 819 (819 WBB), Salt Lake City, UT 84112-0110. Email: mace@met.utah.edu

Abstract

In this paper, millimeter cloud radar (MMCR) and Geosynchronous Meteorological Satellite (GMS) data are combined to study the properties of tropical cirrus that are common in the 10–15-km layer of the tropical troposphere in the western Pacific. Millimeter cloud radar observations collected by the Atmospheric Radiation Measurement program on the islands of Manus and Nauru in the western and central equatorial Pacific during a 12-month period spanning 1999 and 2000 show differences in cirrus properties: over Manus, where clouds above 7 km are observed 48% of the time, the cirrus are thicker and warmer on average and the radar reflectivity and Doppler velocity are larger; over Nauru clouds above 7 km are observed 23% of time. To explain the differences in cloud properties, the relationship between tropical cirrus and deep convection is examined by combining the radar observations with GMS satellite-derived back trajectories. Using a data record of 1 yr, it is found that 47% of the cirrus observed over Manus can be traced to a deep convective source within the past 12 h while just 16% of the cirrus observed over Nauru appear to have a convective source within the previous 12 h. Of the cirrus that can be traced to deep convection, the evolution of the radar-observed cloud properties is examined as a function of apparent cloud age. The radar Doppler moments and ice water path of the observed cirrus at both sites generally decrease as the cirrus age increase. At Manus, it is found that cirrus during boreal winter typically advect over the site from the southeast from convection associated with the winter monsoon, while during boreal summer, the trajectories are mainly from the northeast. The properties of these two populations of cirrus are found to be different, with the winter cirrus having higher concentrations of smaller particles. Examining statistics of the regional convection using Tropical Rainfall Measuring Mission (TRMM), it is found that the properties of the winter monsoon convection in the cirrus source region are consistent with more intense convection compared to the convection in the summer source region.

Corresponding author address: Gerald G. Mace, Dept. of Meteorology, University of Utah, 135 S 1460 E, Rm 819 (819 WBB), Salt Lake City, UT 84112-0110. Email: mace@met.utah.edu

Save
  • Ackerman, T. P., and G. Stokes, 2003: The atmospheric radiation measurement program. Phys. Today, 56 , 3845.

  • Ackerman, T. P., K-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Adler, R. F., M. J. Markus, G. Szejwach, W. E. Shenk, and D. D. Fenn, 1983: Thunderstorm top structure observed by aircraft over flights with an infrared radiometer. J. Climate Appl. Meteor., 22 , 579593.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning observations. J. Appl. Meteor., 39 , 22312248.

    • Search Google Scholar
    • Export Citation
  • Boehm, M. T., and J. Verlinde, 2000: Stratospheric influence on upper tropospheric tropical cirrus. Geophys. Res. Lett., 27 , 32093212.

    • Search Google Scholar
    • Export Citation
  • Boer, E. R., and V. Ramanathan, 1997: Lagrangian approach for deriving cloud characteristics from satellite observations and its implications to cloud parameterization. J. Geophys. Res., 102 , 2138321399.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part 1: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Velinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12 , 201229.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 .4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and S. A. Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: radar echo distributions. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2002: The effect of deep-tropical convection on the tropical tropopause layer. J. Geophys. Res., 107 .4033, doi:10.1029/2001JD000511.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2000: Simulation of tropical upper tropospheric humidity. J. Geophys. Res., 106 , 2015520163.

  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16 , 12411247.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., M. M. Khaiyher, D. A. Spangenburg, M. L. Nordeen, V. Chakrapani, A. V. Gambgheer, J. Huang, and P. Minnis, 2003: The evolution of convective cloud systems determined by GOES-8 during CRYSTAL-FACE. Proc. CRYSTAL-FACE Science Team Meeting, Salt Lake City, UT, NASA.

  • Gossard, E. E., 1994: Measurement of cloud droplet size spectra by Doppler radar. J. Atmos. Oceanic Technol., 11 , 712726.

  • Hartmann, D. L., 1993: Radiative effects of clouds on Earth’s climate. Aerosol–Cloud–Climate Interactions, P. V. Hobbs, Ed., International Geophysical Series 54, Academic Press, 151–173.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2002: Tropical surprise (climate change causes). Science, 295 , 811812.

  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Inoue, T., 1987: A cloud type classification with NOAA-7 split window measurements. J. Geophys. Res., 92 , 39914000.

  • Jensen, E. J., O. B. Toon, W. S. Kinne, and A. J. Heymsfield, 1994: Microphysical modeling of cirrus, 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99 , 1042110442.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101 , 2136121375.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., K. Kelly, and J. C. Wilson, 1993: Measurements of high number densities of ice crystal populations in tropical stratospheric cumulonimbus anvils. J. Geophys. Res., 98 , 86398664.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rain Measuring Mission (TRMM) after 2 years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45 , 15941605.

  • Liou, K-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671200.

  • Liou, K-N., S. C. Ou, Y. Takano, F. P. J. Valero, and T. P. Ackerman, 1990: Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during the STEP. J. Appl. Meteor., 29 , 716726.

    • Search Google Scholar
    • Export Citation
  • Liu, C. L., and A. J. Illingworth, 2000: Toward more accurate retrieval of ice water content from radar measurements of clouds. J. Appl. Meteor., 39 , 11301146.

    • Search Google Scholar
    • Export Citation
  • Luo, Z. Z., 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observation. J. Climate, 17 , 45414563.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15 , 25052515.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., A. J. Heymsfield, and M. Poellot, 2002: On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res., 107 .4815, doi:10.1029/2001JD001308.

    • Search Google Scholar
    • Export Citation
  • Massie, S., A. Gettelman, W. Randel, and D. Baumgardner, 2002: Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107 , 45914607.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., 2003: Patterns of convection in the tropical western Pacific. Proc. 13th ARM Science Team Meeting, Broomfield, CO, U.S. Department of Energy.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. A. Ackerman, and M. P. Jensen, 1998: Characteristics of the atmospheric state and the surface radiation budget at the tropical western pacific ARM site. Geophys. Res. Lett., 25 , 45134516.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. K. Chai, Y. L. Liu, A. J. Heymsfield, and Y. Dong, 1997: Modeling cirrus cloud. Part 1: Treatment of bimodal size spectra and cases study analysis. J. Atmos. Sci., 54 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 2001: Aircraft observation of thin cirrus clouds near the tropical tropopause. J. Geophys. Res., 106 , 97659786.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1996: Maintenance of the free-tropospheric tropical water vapor distribution. Part I: Clear regime budget. J. Climate, 9 , 29032918.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1998: Tracking upper tropospheric water vapor radiances: a satellite perspective. J. Geophys. Res., 103 , 1706917081.

  • Soden, B. J., 2004: The impact of tropical convection and cirrus on upper tropospheric humidity: A lagrangian analysis of satellite measurements. Geophys. Res. Lett., 31 .L20104, doi:10.1029/2004GL020980.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and R. Fu, 1995: A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Climate, 8 , 23332351.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1984: Diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112 , 23382344.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., and E. J. Zipser, 1986: A radar study of convective cells in mesoscale systems in GATE. Part II: Life cycles of convective cells. J. Atmos. Sci., 43 , 199218.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., E. J. Zipser, D. J. Cecil, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • VanReken, T. M., T. A. Rissman, G. C. Roberts, V. Varutbankul, H. H. Jonsson, R. C. Flagan, and J. H. Seinfeld, 2003: Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. J. Geophys. Res., 108 .4633, doi:10.1029/2003JD003582.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107 .8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Yeh, H., and Y. Chen, 2002: The role of offshore convergence on coastal rainfall during TAMEX IOP 3. Mon. Wea. Rev., 130 , 27092730.

  • Zipser, E. J., 1988: The evolution of mesoscale convective systems: Evidence from radar and satellite observations. Tropical Rainfall Measurements, J. Theon and N. Fugono, Eds., A. Deepak Publishing, 159–166.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 151 15
PDF Downloads 156 77 10