Effective Refractive Indices of Water and Sulfate Drops Containing Absorbing Inclusions

Carynelisa Erlick Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Carynelisa Erlick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study the range of visible refractive indices and single-scattering albedos that can be obtained using various mean field formulations for mixtures of two components, where one component absorbs in the visible, is explored. For calculations of global radiative forcing and climate response, such formulations provide a convenient way to take into account internal mixing of aerosol components without the computational burden of a more exact theory, provided that the limits of their applicability are kept in mind. Within those limits, the results show that for water and sulfate drops containing dust and soot inclusions, the degree of interaction between the electric fields of neighboring inclusions is not important. However, the shape and size of the inclusions can cause a variation in the effective imaginary refractive index of up to a factor of 3.4 and a variation in the single-scattering albedo of up to 0.18 in absolute value.

Corresponding author address: C. Erlick, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: caryn@vms.huji.ac.il

Abstract

In this study the range of visible refractive indices and single-scattering albedos that can be obtained using various mean field formulations for mixtures of two components, where one component absorbs in the visible, is explored. For calculations of global radiative forcing and climate response, such formulations provide a convenient way to take into account internal mixing of aerosol components without the computational burden of a more exact theory, provided that the limits of their applicability are kept in mind. Within those limits, the results show that for water and sulfate drops containing dust and soot inclusions, the degree of interaction between the electric fields of neighboring inclusions is not important. However, the shape and size of the inclusions can cause a variation in the effective imaginary refractive index of up to a factor of 3.4 and a variation in the single-scattering albedo of up to 0.18 in absolute value.

Corresponding author address: C. Erlick, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: caryn@vms.huji.ac.il

Save
  • Ackerman, T. P., and O. B. Toon, 1981: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt., 20 , 3661–3667.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley, 530 pp.

  • Bruggeman, D. A. G., 1935: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I, Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann. Phys., 24 , 636–679.

    • Search Google Scholar
    • Export Citation
  • Chan, C. Y., and R. Knight, 2001: Laboratory measurements of electromagnetic wave velocity in layered sands. Water Resour. Res., 37 , 1099–1105.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., and V. Srivastava, 1983: Dielectric constant of a composite inhomogeneous medium. Phys. Rev., B27 , 5098–5106.

  • Chýlek, P., and G. Videen, 1998: Scattering by a composite sphere and effective medium approximations. Opt. Comm., 146 , 15–20.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., V. Ramaswamy, and R. J. Cheng, 1984a: Effect of graphitic carbon on the albedo of clouds. J. Atmos. Sci., 41 , 3076–3084.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., V. Ramaswamy, and V. Srivastava, 1984b: Graphitic carbon content of aerosols, clouds and snow, and its climatic implications. Sci. Total Environ., 36 , 117–120.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., V. Srivastava, R. G. Pinnick, and R. T. Wang, 1988: Scattering of electromagnetic waves by composite spherical particles: Experiment and effective medium approximations. Appl. Opt., 27 , 2396–2404.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., G. Videen, D. Ngo, R. G. Pinnick, and J. D. Klett, 1995: Effect of black carbon on the optical properties and climate forcing of sulfate aerosols. J. Geophys. Res., 100 , D8,. 16325–16332.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett, 1996: Black carbon and absorption of solar radiation by clouds. J. Geophys. Res., 101 , D18,. 23365–23371.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, 2000: Effective medium approximations for heterogeneous particles. Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press, 273–308.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., P. Koepke, and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., D. R. Moore, and H. C. van de Hulst, 1969: The transfer of visible radiation through clouds. J. Atmos. Sci., 26 , 1078–1087.

    • Search Google Scholar
    • Export Citation
  • Friedman, S. P., 1998: A saturation degree-dependent composite sphere model for describing the effective dielectric constant of unsaturated porous media. Water Resour. Res., 34 , 2949–2961.

    • Search Google Scholar
    • Export Citation
  • Friedman, S. P., and D. A. Robinson, 2002: Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour. Res., 38 .1236, doi:10.1029/2001WR000746.

    • Search Google Scholar
    • Export Citation
  • Fripiat, J., J. Cases, M. Francois, and M. Letellier, 1982: Thermodynamic and microdynamic behaviour of water in clay suspensions and gels. J. Colloid Interface Sci., 89 , 378–400.

    • Search Google Scholar
    • Export Citation
  • Fuller, K. A., 1995: Scattering and absorption cross sections of compounded spheres, III, Spheres containing arbitrarily located spherical inhomogeneities. J. Opt. Soc. Amer. A,, 12 , 893–904.

    • Search Google Scholar
    • Export Citation
  • Fuller, K. A., W. C. Malm, and S. M. Kreidenweiss, 1999: Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res., 104 , D13,. 15941–15954.

    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 12 , 555–563.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and K. P. Shine, 1997: Multi-spectral calculations of direct radiative forcing of tropospheric sulfate and soot aerosols using a column model. Quart. J. Roy. Meteor. Soc., 123 , 1907–1930.

    • Search Google Scholar
    • Export Citation
  • Ioannidou, M. P., and D. P. Chrissoulidis, 2002: Electromagnetic-wave scattering by a sphere with multiple spherical inclusions. J. Opt. Soc. Amer. A, 19 , 505–512.

    • Search Google Scholar
    • Export Citation
  • Ioannidou, M. P., I. I. Bakatsoula, and D. P. Chrissoulidis, 2000: Light scattering and absorption by soot in the presence of sulfate aerosols. Appl. Opt., 39 , 4205–4213.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106 , 1551–1568.

    • Search Google Scholar
    • Export Citation
  • Jones, S. B., and S. P. Friedman, 2000: Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resour. Res., 36 , 2821–2833.

    • Search Google Scholar
    • Export Citation
  • Kerker, M., 1969: The Scattering of Light and Other Electromagnetic Radiation. Academic Press, 666 pp.

  • Kolokolova, L., and BoÃ…S. Gustafson, 2001: Scattering by inhomogeneous particles: Microwave analog experiments and comparison to effective medium theories. J. Quant. Spectrosc. Radiat. Transfer, 70 , 611–625.

    • Search Google Scholar
    • Export Citation
  • Lesins, G., P. Chýlek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res., 107 .4094, doi:10.1029/2001JD000973.

    • Search Google Scholar
    • Export Citation
  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203 , 2014–2020.

  • Mulla, D. J., J. H. Cushman, and P. F. Low, 1984: Molecular dynamics and statistical mechanics of water near an uncharged silicate surface. Water Resour. Res., 20 , 619–628.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., F. Stordal, K. Restad, and I. Isaksen, 1998: Estimates of the direct radiative forcing due to sulfate and soot aerosols. Tellus, 50B , 463–477.

    • Search Google Scholar
    • Export Citation
  • Niklasson, G. A., C. G. Granqvist, and O. Hunderi, 1981: Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt., 20 , 26–30.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., C. C. Chuang, and K. Grant, 1998: Climate forcing by carbonaceous and sulfate aerosols. Climate Dyn., 14 , 839–851.

    • Search Google Scholar
    • Export Citation
  • Polder, D., and J. H. V. van Santen, 1946: The effective permeability of mixtures of solids. Physica, 12 , 257–271.

  • Robinson, D. A., and S. P. Friedman, 2001: Effect of particle size distribution on the effective dielectric permittivity of saturated granular media. Water Resour. Res., 37 , 33–40.

    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., D. A. Robinson, S. P. Friedman, and A. Lazar, 2003: Measurement and modeling of the TDR signal propagation through layered dielectric media. Soil Sci. Soc. Amer. J., 67 , 1113–1121.

    • Search Google Scholar
    • Export Citation
  • Sen, P. N., C. Scala, and M. H. Cohen, 1981: A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46 , 781–795.

    • Search Google Scholar
    • Export Citation
  • Sihvola, A., 1996: Dielectric mixture theories in permittivity prediction: Effects of water on macroscopic parameters. Microwave Aquametry Electromagnetic Wave Interaction with Water-Containing Materials, A. W. Kraszewski, Ed., IEEE Press, 111–121.

  • Sihvola, A., 1999: Electromagnetic Mixing Formulas and Applications. The Institution of Electrical Engineers, 284 pp.

  • Sihvola, A., 2002: Dielectric enhancement effect in moist materials. Electromagnetics Laboratory Rep. Series 399, Helsinki University of Technology, 22 pp.

  • Sihvola, A., and R. Sharma, 1999: Scattering corrections for the Maxwell Garnett mixing rule. Microwave Opt. Technol. Lett., 22 , 4,. 229–231.

    • Search Google Scholar
    • Export Citation
  • Spanier, J. E., and I. P. Herman, 2000: Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Phys. Rev. B, 61 , 10437–10450.

    • Search Google Scholar
    • Export Citation
  • Sposito, G., and R. Prost, 1982: Structure of water absorbed on smectites. Chem. Rev., 82 , 553–573.

  • Stroud, D., and F. P. Pan, 1978: Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals. Phys. Rev., B17 , 1602–1610.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., J. B. Pollack, and B. N. Khare, 1976: The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride. J. Geophys. Res., 81 , 5733–5748.

    • Search Google Scholar
    • Export Citation
  • Tsang, L., J. A. Kong, and R. T. Shin, 1985: Theory of Microwave Remote Sensing. John Wiley, 613 pp.

  • Videen, G., D. Ngo, and P. Chýlek, 1994: Effective-medium predictions of absorption by graphitic carbon in water drops. Opt. Lett., 19 , 21,. 1675–1676.

    • Search Google Scholar
    • Export Citation
  • Videen, G., D. Ngo, P. Chýlek, and R. G. Pinnick, 1995: Light scattering from a sphere with an irregular inclusion. J. Opt. Soc. Amer. A, 12 , 922–928.

    • Search Google Scholar
    • Export Citation
  • Voshchinnikov, N. V., and J. S. Mathis, 1999: Calculating cross sections of composite interstellar grains. Astrophys. J., 526 , 257–264.

    • Search Google Scholar
    • Export Citation
  • Voshchinnikov, N. V., V. B. Il’in, and Th Henning, 2005: Modelling the optical properties of composite and porous interstellar grains. Astron. Astrophys., 429 , 371–381.

    • Search Google Scholar
    • Export Citation
  • Wachniewski, A., and H. B. McClung, 1986: New approach to effective medium for composite materials: Application to electromagnetic properties. Phys. Rev. B, 33 , 8053–8059.

    • Search Google Scholar
    • Export Citation
  • Weast, R. C., M. J. Astle, and W. H. Beyer, 1986: CRC Handbook of Chemistry and Physics. 66th ed. CRC Press, 2363 pp.

  • Webman, I., J. Jortner, and M. H. Cohen, 1977: Theory of optical and microwave properties of microscopically inhomogeneous materials. Phys. Rev. B, 15 , 5712–5723.

    • Search Google Scholar
    • Export Citation
  • Wolff, M. J., G. C. Clayton, and S. J. Gibson, 1998: Modeling composite and fluffy grains, II, Porosity and phase functions. Astrophys. J., 503 , 815–830.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 149 15
PDF Downloads 318 100 15