Shear and Static Instability of Inertia–Gravity Wave Packets: Short-Term Modal and Nonmodal Growth

Ulrich Achatz Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Kühlungsborn, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
and
Gerhard Schmitz Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Kühlungsborn, Germany

Search for other papers by Gerhard Schmitz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The problem of nonmodal instabilities of inertia–gravity waves (IGW) in the middle atmosphere is addressed, within the framework of a Boussinesq model with realistic molecular viscosity and thermal diffusion, by singular-vector analysis of horizontally homogeneous vertical profiles of wind and buoyancy obtained from IGW packets at their statically least stable or most unstable horizontal location. Nonmodal growth is always found to be significantly stronger than that of normal modes, most notably at wave amplitudes below the static instability limit where normal-mode instability is very weak, whereas the energy gain between the optimal perturbation and singular vector after one Brunt–Väisälä period can be as large as two orders of magnitude. Among a multitude of rapidly growing singular vectors for this optimization time, small-scale (wavelengths of a few 100 m) perturbations propagating in the horizontal parallel to the IGW are most prominent. These parallel optimal perturbations are amplified by a roll mechanism, while transverse perturbations (with horizontal scales of a few kilometers) are to a large part subject to an Orr mechanism, both controlled by the transverse wind shear in the IGW at its statically least stable altitude, but further enhanced by reduced static stability. The elliptic polarization of the IGW leaves its traces in an additional impact of the roll mechanism via the parallel wind shear on the leading transverse optimal perturbation.

Corresponding author address: Ulrich Achatz, Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: achatz@iap-kborn.de

Abstract

The problem of nonmodal instabilities of inertia–gravity waves (IGW) in the middle atmosphere is addressed, within the framework of a Boussinesq model with realistic molecular viscosity and thermal diffusion, by singular-vector analysis of horizontally homogeneous vertical profiles of wind and buoyancy obtained from IGW packets at their statically least stable or most unstable horizontal location. Nonmodal growth is always found to be significantly stronger than that of normal modes, most notably at wave amplitudes below the static instability limit where normal-mode instability is very weak, whereas the energy gain between the optimal perturbation and singular vector after one Brunt–Väisälä period can be as large as two orders of magnitude. Among a multitude of rapidly growing singular vectors for this optimization time, small-scale (wavelengths of a few 100 m) perturbations propagating in the horizontal parallel to the IGW are most prominent. These parallel optimal perturbations are amplified by a roll mechanism, while transverse perturbations (with horizontal scales of a few kilometers) are to a large part subject to an Orr mechanism, both controlled by the transverse wind shear in the IGW at its statically least stable altitude, but further enhanced by reduced static stability. The elliptic polarization of the IGW leaves its traces in an additional impact of the roll mechanism via the parallel wind shear on the leading transverse optimal perturbation.

Corresponding author address: Ulrich Achatz, Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: achatz@iap-kborn.de

Save
  • Achatz, U., and G. Schmitz, 2006: Optimal growth in inertia–gravity wave packets: Energetics, long-term development, and three-dimensional structure. J. Atmos. Sci., 63 , 414434.

    • Search Google Scholar
    • Export Citation
  • Afanasyev, Y. D., and W. R. Peltier, 2001: Numerical simulations of internal gravity wave breaking in the middle atmosphere: The influence of dispersion and three-dimensionalization. J. Atmos. Sci., 58 , 132153.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø, C. E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions. 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99 , 80958108.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., P. J. Ioannou, and G. E. Kefaliakos, 2001: The emergence of coherent structures in stratified shear flow. J. Atmos. Sci., 58 , 27902806.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and G. Schmitz, 2002: Energy deposition and turbulent dissipation owing to gravity waves in the mesosphere. J. Atmos. Sci., 59 , 5468.

    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27 , 513539.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92 , 466480.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 1999: On shear-generated gravity waves that reach the mesosphere. Part II: Wave propagation. J. Atmos. Sci., 56 , 37643773.

    • Search Google Scholar
    • Export Citation
  • Butler, K. M., and B. F. Farrell, 1992: Three dimensional optimal perturbations in viscous shear flow. Phys. Fluids A, 4 , 16371650.

  • Chimonas, G., and C. O. Hines, 1986: Doppler ducting of atmospheric gravity waves. J. Geophys. Res., 91 , 12191230.

  • Dunkerton, T. J., 1997: Shear instability of internal inertia–gravity waves. J. Atmos. Sci., 54 , 16281641.

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 465 pp.

  • Ellingsen, T., and E. Palm, 1975: Stability of linear flow. Phys. Fluids, 18 , 487488.

  • Farrell, B. F., 1988a: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Farrell, B. F., 1988b: Optimal excitation of perturbations in viscous shear. Phys. Fluids, 31 , 20932102.

  • Farrell, B. F., and P. J. Ioannou, 1993a: Transient development of perturbations in stratified shear flow. J. Atmos. Sci., 50 , 22012214.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993b: Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A, 5 , 13901400.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53 , 20412053.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20 , 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and L. Yuan, 1989a: An analysis of gravity wave ducting in the atmosphere: Eckarts resonances in thermal and Doppler ducts. J. Geophys. Res., 94 , 1845518466.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and L. Yuan, 1989b: Stability analysis of inertio–gravity wave structure in the middle atmosphere. J. Atmos. Sci., 46 , 17381745.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, and Ø Andreassen, 1994: Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99 , 81098123.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108 .8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24 , 437474.

  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38 , 14411481.

  • Hines, C. O., 1997a: Doppler spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1. Basic formulation. J. Atmos. Sol.-Terr. Phys., 59 , 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2. Broad spectra and quasi monochromatic waves, and implementation. J. Atmos. Sol.-Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., 1978: The stratosphere and mesosphere. Quart. J. Roy. Meteor. Soc., 104 , 129.

  • Isler, J. R., D. C. Fritts, Ø Andreassen, and C. E. Wasberg, 1994: Gravity wave breaking in two and three dimensions. 3. Vortex breakdown and transition to isotropy. J. Geophys. Res., 99 , 81258137.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1982: On parametric instabilities of finite-amplitude internal gravity waves. J. Fluid Mech., 119 , 367377.

  • Klostermeyer, J., 1983: Parametric instabilities of internal gravity waves in Boussinesq fluids with large Reynolds numbers. Geophys. Astrophys. Fluid Dyn., 26 , 85105.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 61 , 125.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., and G. Schmitz, 2003: Radiating instabilities of internal inertio–gravity waves. J. Atmos. Sci., 60 , 12571269.

  • Landahl, M. T., 1980: A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech., 98 , 243251.

  • Lehoucq, R. B., D. C. Sorensen, and C. Yang, 1998: ARPACK users’ guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 160 pp.

  • Lelong, M-P., and D. J. Dunkerton, 1998a: Inertia–gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55 , 24732488.

    • Search Google Scholar
    • Export Citation
  • Lelong, M-P., and D. J. Dunkerton, 1998b: Inertia–gravity wave breaking in three dimensions. Part II: Convectively unstable waves. J. Atmos. Sci., 55 , 24892501.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lombard, P. N., and J. R. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8 , 32713287.

    • Search Google Scholar
    • Export Citation
  • Lübken, F-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102 , 1344113456.

    • Search Google Scholar
    • Export Citation
  • Mathews, J., and R. L. Walker, 1970: Mathematical Methods of Physics. Addison-Wesley, 501 pp.

  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated gravity wave drag. J. Geophys. Res., 100 , 2584125853.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., 1976: The occurrence of parametric instabilities in finite amplitude internal gravity waves. J. Fluid Mech., 78 , 763784.

    • Search Google Scholar
    • Export Citation
  • Moffat, H. K., 1967: The interaction of turbulence with strong shear. Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarsky, Eds., Nauka, 139–161.

    • Search Google Scholar
    • Export Citation
  • Müllemann, A., M. Rapp, and F-J. Lübken, 2003: Morphology of turbulence in the polar summer mesopause region during the MIDAS/SOLSTICE campaign 2001. Adv. Space Res., 31 , 20692074.

    • Search Google Scholar
    • Export Citation
  • Orr, W. M’F., 1907: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. Roy. Irish Acad., 27A , 9217.

    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., and D. S. Henningson, 2001: Stability and Transition in Shear Flows. Springer, 556 pp.

  • Sonmor, L. J., and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54 , 26552680.

  • Trefethen, L. N., A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, 1993: Hydrodynamic stability without eigenvalues. Science, 261 , 578584.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58 , 18371857.

    • Search Google Scholar
    • Export Citation
  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26 , 439442.

  • Winters, K. B., and E. A. D’Asaro, 1994: Three-dimensional wave instability near a critical level. J. Fluid Mech., 272 , 255284.

  • Yau, K-H., G. P. Klaassen, and L. J. Sommor, 2004: Principal instabilities of large amplitude inertio-gravity waves. Phys. Fluids, 16 , 936951.

    • Search Google Scholar
    • Export Citation
  • Yuan, L., and D. C. Fritts, 1989: Influence of a mean shear on the dynamical instability of an inertia-gravity wave. J. Atmos. Sci., 46 , 25622568.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 175 39 2
PDF Downloads 75 21 2