Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles’ Histories for Interpretation of the Recent INCA Campaign

Marie Monier Laboratoire de Météorologie Physique, OPGC/Université Blaise Pascal/CNRS, Clermont-Ferrand, France

Search for other papers by Marie Monier in
Current site
Google Scholar
PubMed
Close
,
Wolfram Wobrock Laboratoire de Météorologie Physique, OPGC/Université Blaise Pascal/CNRS, Clermont-Ferrand, France

Search for other papers by Wolfram Wobrock in
Current site
Google Scholar
PubMed
Close
,
Jean-François Gayet Laboratoire de Météorologie Physique, OPGC/Université Blaise Pascal/CNRS, Clermont-Ferrand, France

Search for other papers by Jean-François Gayet in
Current site
Google Scholar
PubMed
Close
, and
Andrea Flossmann Laboratoire de Météorologie Physique, OPGC/Université Blaise Pascal/CNRS, Clermont-Ferrand, France

Search for other papers by Andrea Flossmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cirrus clouds play an important role in the earth’s energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may have different microphysical properties and, therefore, a different impact on the climate system via the changed radiative properties compared to background cirrus clouds. To study this aspect, the European project called the Interhemispheric Differences in Cirrus Properties due to Anthropogenic Emissions (INCA) measured the microphysical properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of the present work was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalization of the INCA observations. This model considers moist aerosol particles through the Externally Mixed (EXMIX) model, so that the chemical composition of solution droplets can be followed. Ice crystal formation is described through homogeneous or heterogeneous nucleation. The crystals then grow by deposition. With this model, the interactions between the microphysical processes, simulated ice crystal concentrations, and dimensional distributions of the INCA observations were studied, and explanations were provided for the observed differences between background and polluted cirrus clouds.

Corresponding author address: Prof. Andrea I. Flossmann, LaMP, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France. Email: Andrea.Flossmann@opgc.univ-bpclermont.fr

Abstract

Cirrus clouds play an important role in the earth’s energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may have different microphysical properties and, therefore, a different impact on the climate system via the changed radiative properties compared to background cirrus clouds. To study this aspect, the European project called the Interhemispheric Differences in Cirrus Properties due to Anthropogenic Emissions (INCA) measured the microphysical properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of the present work was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalization of the INCA observations. This model considers moist aerosol particles through the Externally Mixed (EXMIX) model, so that the chemical composition of solution droplets can be followed. Ice crystal formation is described through homogeneous or heterogeneous nucleation. The crystals then grow by deposition. With this model, the interactions between the microphysical processes, simulated ice crystal concentrations, and dimensional distributions of the INCA observations were studied, and explanations were provided for the observed differences between background and polluted cirrus clouds.

Corresponding author address: Prof. Andrea I. Flossmann, LaMP, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France. Email: Andrea.Flossmann@opgc.univ-bpclermont.fr

Save
  • Asai, T., and A. Kasahara, 1967: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24 , 487496.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., R. P. Lawson, and C. G. Schmitt, 2000: Clumpy cirrus. Proc. 13th ICCP Conf., Reno, NV, ICCP, 637–641.

  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57 , 284294.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1999: Aircraft can increase cirrus cloudiness. Nature, 397 , 3031.

  • Brune, W. H., and Coauthors, 1999: OH and HO2 chemistry in the North Atlantic free troposphere. Geophys. Res. Lett., 26 , 30773080.

  • Clegg, S. L., and P. Brimblecombe, 1995: Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg −1 aqueous sulfuric acid from <200 to 328 K. J. Chem. Eng. Data, 40 , 4349.

    • Search Google Scholar
    • Export Citation
  • DeMott, P., D. C. Rogers, and S. M. Kreidenweiss, 1997: The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res., 102 , 1957519584.

    • Search Google Scholar
    • Export Citation
  • DeMott, P., Y. Chen, C. H. Twohy, D. Baumgardner, A. J. Heymsfield, and K. R. Chan, 1998: The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS. Geophys. Res. Lett., 25 , 13871390.

    • Search Google Scholar
    • Export Citation
  • Dowling, D. R., and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29 , 970978.

  • Ettner, M., S. K. Mitra, and S. Borrmann, 2004: Heterogeneous freezing of single sulphuric acid solution droplets: Laboratory experiments utilising an acoustic levitator. Atmos. Chem. Phys., 4 , 19251932.

    • Search Google Scholar
    • Export Citation
  • Gayet, J-F., and Coauthors, 2002: Quantitative measurement of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals. Geophys. Res. Lett., 29 , 22302233.

    • Search Google Scholar
    • Export Citation
  • Gayet, J-F., and Coauthors, 2004: Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during INCA experiment. J. Geophys. Res., 109 .D20206, doi:10.1029/2004JD004803.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., R. Sausen, and U. Schumann, 1999: A diagnostic study of the global distribution of contrails. Part II: Future air traffic scenarios. Theor. Appl. Climatol., 63 , 19.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., M. Monier, and J-F. Gayet, 2003: The deposition coefficient and its role for cirrus clouds. J. Geophys. Res., 108 , 40694073.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Heymsfield, A. J., and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus: Microphysical properties. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 78–101.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 327–345.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, D. L. Westphal, S. Kinne, and A. J. Heymsfield, 1994: Microphysical modelling of cirrus. 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99 , 1042110442.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and J. Ström, 2003: The roles of dynamical variability and aerosols in cirrus cloud formation. Atmos. Chem. Phys., 3 , 823838.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett., 27 , 40814084.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 2002: Microphysical processes in cirrus and their impact on radiation: A mesoscale modelling perspective. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 397–432.

    • Search Google Scholar
    • Export Citation
  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transition: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102 , 89248928.

    • Search Google Scholar
    • Export Citation
  • Koop, T., H. P. Ng, B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406 , 611615.

    • Search Google Scholar
    • Export Citation
  • Lin, R-F., D. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu, 2002: Cirrus parcel model comparison project. Phase 1: The critical components to simulate cirrus initiation explicitly. J. Atmos. Sci., 59 , 23052319.

    • Search Google Scholar
    • Export Citation
  • Martin, J. J., P. K. Wang, and H. R. Pruppacher, 1980: A theoretical determination with which aerosols particles are collected by simple ice crystal plates. J. Atmos. Sci., 37 , 16281638.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parametrizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Minikin, A., A. Petzold, J. Ström, R. Krejci, M. Seifert, P. van Velthoven, H. Schlager, and U. Schumann, 2003: Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes. Geophys. Res. Lett., 30 , 15031506.

    • Search Google Scholar
    • Export Citation
  • Myrhe, C. E. L., C. J. Nielsen, and O. W. Sasstad, 1998: Density and surface tension of aqueous H2SO4 at low temperatures. J. Chem. Eng. Data, 43 , 617621.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., J-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann, 2002: Water vapour measurements inside cirrus clouds in Northern and Southern Hemispheres during INCA. Geophys. Res. Lett., 29 , 18131816.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 954 pp.

  • Ramanathan, V., and W. D. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., A. Ansmann, M. Serwazi, C. Weitkamp, and W. Michaelis, 1996: Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds: A case study. Geophys. Res. Lett., 23 , 19291932.

    • Search Google Scholar
    • Export Citation
  • Sabinina, L., and L. Terpugov, 1935: Die Oberflachenspannung des systems Schwefelsaure-wasser. Z. Phys. Chem. Abt., A173 , 237241.

  • Sassen, K., and G. C. Dodd, 1989: Haze particle nucleation simulations in cirrus clouds, and applications for numerical and lidar studies. J. Atmos. Sci., 46 , 30053014.

    • Search Google Scholar
    • Export Citation
  • Seifert, M., J. Ström, R. Krejci, A. Minikin, A. Petzold, J-F. Gayet, U. Schumann, and J. Ovarlez, 2003: In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses. Atmos. Chem. Phys., 3 , 10371049.

    • Search Google Scholar
    • Export Citation
  • Seifert, M., and Coauthors, 2004: Thermal, stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: Comparing clean and polluted air masses. Atmos. Chem. Phys., 4 , 13431353.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111 , 479486.

  • Starr, D., and M. Quante, and O’C., 2002: Dynamic processes in cirrus clouds: Concepts and models. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 375–396.

    • Search Google Scholar
    • Export Citation
  • Ström, J., 2001: Aerosol and cirrus measurements at midlatitudes on the Southern Hemisphere: An overview based on the first INCA experiment. Air Pollution Rep. 74, Rep. EUR 19, EN, European Commission Project EVK2–1999–00039, Brussels, Belgium, 428 pp.

  • Sundqvist, H., 2002: On cirrus modelling for general circulation and climate models. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 297–309.

    • Search Google Scholar
    • Export Citation
  • Tabazadeh, A., S. T. Martin, and J. S. Lin, 2000: The effect of particle size and nitric acid uptake on the homogeneous freezing of aqueous sulfuric acid particles. Geophys. Res. Lett., 27 , 11111114.

    • Search Google Scholar
    • Export Citation
  • von der Emde, K., and P. Kahlig, 1989: Comparison of the observed 19th July 1981, Montana thunderstorm with results of a one-dimensional cloud model using Kessler parameterized microphysics. Ann. Geophys., 7 , 405414.

    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. Wusheng, 2000: Collision efficiencies of ice crystals at low intermediate Reynolds number colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57 , 10011009.

    • Search Google Scholar
    • Export Citation
  • Wobrook, W., and Coauthors, 2001: The Cloud Ice Mountain Experiment (CIME): Experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion. Atmos. Res., 58 , 231265.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1975: The evolution of drop size spectra due to condensation, coalescence, and break-up. J. Atmos. Sci., 32 , 965973.

  • Zawadzki, I., E. Monteiro, and F. Fabry, 1994: The development of drop size distributions in light rain. J. Atmos. Sci., 51 , 11001113.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 68 2
PDF Downloads 81 35 3