• Alpert, P., 1986: Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Climate Appl. Meteor., 25 , 532545.

    • Search Google Scholar
    • Export Citation
  • Bader, M. J., , and W. T. Roach, 1977: Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc., 103 , 269280.

  • Barros, A. P., , and D. P. Lettenmaier, 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121 , 11951214.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and D. P. Lettenmaier, 1994a: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32 , 265284.

  • Barros, A. P., , and D. P. Lettenmeier, 1994b: Incorporation of an evaporative cooling scheme into a dynamic model of orographic precipitation. Mon. Wea. Rev., 122 , 27772783.

    • Search Google Scholar
    • Export Citation
  • Beaumont, C., , P. Fullsack, , and J. Hamilton, 1992: Erosional control of active compressional orogens. Thrust Tectonics, K. R. McClay, Ed., Chapman and Hall, 1–18.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , F. F. Hill, , and C. W. Pardoe, 1974: Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100 , 309330.

    • Search Google Scholar
    • Export Citation
  • Caine, N., 1980: The rainfall intensity: Duration controls on shallow landslides and debris flows. Geogr. Ann. Series A, 62 , 2327.

  • Carruthers, D. J., , and T. W. Choularton, 1983: A model of the feeder–seeder mechanism of orographic rain including stratification and wind-drift effects. Quart. J. Roy. Meteor. Soc., 109 , 575588.

    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., , and S. J. Perry, 1986: A model of the orographic enhancement mechanism of snowfall by the seeder–feeder mechanism. Quart. J. Roy. Meteor. Soc., 112 , 335345.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61 , 588606.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , K. J. Westrick, , and C. F. Mass, 1999: Evaluation of the MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Search Google Scholar
    • Export Citation
  • Colton, D. E., 1976: Numerical simulation of the orographically induced precipitation distribution for use in hydrologic analysis. J. Appl. Meteor., 15 , 12411251.

    • Search Google Scholar
    • Export Citation
  • Conway, H., , and C. F. Raymond, 1993: Snow stability during rain. J. Glaciol., 39 , 635642.

  • Daly, C., , R. P. Neilson, , and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 472–492.

  • Durran, D. R., 2003: Lee waves and mountain waves. The Encyclopedia of the Atmospheric Sciences, J. Holton, J. Curry, and J. Pyle, Eds., Academic Press, 1161–1169.

    • Search Google Scholar
    • Export Citation
  • Fraser, A. B., , R. C. Easter, , and P. V. Hobbs, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part I: Airflow model. J. Atmos. Sci., 30 , 801812.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , R. C. Easter, , and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part II: Microphysics. J. Atmos. Sci., 30 , 813823.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , T. J. Matejka, , P. H. Herzegh, , J. D. Locatelli, , and R. A. Houze, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part II: Warm frontal clouds. J. Atmos. Sci., 37 , 597611.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A , 301316.

  • Jiang, Q., , and R. B. Smith, 2003: Cloud time scales and orographic precipitation. J. Atmos. Sci., 60 , 15431558.

  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39 , 448460.

  • Kageyama, M., , P. J. Valdes, , G. Ramstein, , C. Hewitt, , and U. Wyputta, 1999: Northern Hemisphere storm tracks in present day and Last Glacial Maximum climate simulations: A comparison of the European PMIP models. J.Climate, 12 , 742760.

    • Search Google Scholar
    • Export Citation
  • Katzfey, J. J., 1995a: Simulation of extreme New Zealand precipitation events. Part I: Sensitivity of orography and resolution. Mon. Wea. Rev., 123 , 737754.

    • Search Google Scholar
    • Export Citation
  • Katzfey, J. J., 1995b: Simulation of extreme New Zealand precipitation events. Part II: Mechanisms of precipitation development. Mon. Wea. Rev., 123 , 755775.

    • Search Google Scholar
    • Export Citation
  • Lang, J. T., , and A. P. Barros, 2002: An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Mon. Wea. Rev., 130 , 12991316.

    • Search Google Scholar
    • Export Citation
  • Lang, J. T., , and A. P. Barros, 2004: Winter storms in the central Himalayas. J. Meteor. Soc. Japan, 82 , 829844.

  • Medina, S., , and R. A. Houze Jr., 2003: Air motions and precipitation growth in alpine storms. Quart. J. Roy. Meteor. Soc., 129 , 345371.

    • Search Google Scholar
    • Export Citation
  • Montgomery, D. R., , G. Balco, , and S. D. Willett, 2001: Climatic, tectonics, and the morphology of the Andes. Geology, 29 , 579582.

  • Myers, V. A., 1962: Airflow on the windward side of a ridge. J. Geophys. Res., 67 , 42674291.

  • Nordø, J., , and K. Hjortnæs, 1966: Statistical studies of precipitation on local, national, and continental scales. Geofys. Publ., 26 , 146.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Robichaud, A. J., , and G. L. Austin, 1988: On the modeling of warm orographic rain by the seeder-feeder mechanism. Quart. J. Roy. Meteor. Soc., 114 , 967988.

    • Search Google Scholar
    • Export Citation
  • Reiners, P. W., , T. A. Ehlers, , S. G. Mitchell, , and D. R. Montgomery, 2003: Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426 , 645647.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1978: Orographic precipitation model for hydrometeorological use. Colorado State University Atmospheric Paper 287, 198 pp.

  • Roe, G. H., 2002: Modeling precipitation over ice sheets: An assessment using Greenland. J. Glaciol., 48 , 7080.

  • Roe, G. H., , and R. S. Lindzen, 2001: The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J. Climate, 14 , 14501465.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and R. Ferretti, 2001: Mechanisms of intense alpine rainfall. J. Atmos. Sci., 58 , 17321749.

  • Sanberg, J. A. M., , and J. Oerlemans, 1983: Modeling of Pleistocene European ice sheets: the effect of upslope precipitation. Geol. Mijnbouw, 62 , 267273.

    • Search Google Scholar
    • Export Citation
  • Sarker, R. P., 1966: A dynamical model of orographic rainfall. Mon. Wea. Rev., 94 , 555572.

  • Sawyer, J. S., 1956: The physical and dynamical problems of orographic rain. Weather, 11 , 375381.

  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33 , 11631175.

  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R. B., 2003: A linear upslope time-delay model for orographic precipitation. J. Hydrol., 282 , 29.

  • Smith, R. B., , and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771399.

  • Smith, R. B., , Q. Jiang, , M. G. Fearon, , R. Tabary, , M. Dorninger, , J. D. Doyle, , and R. Benoit, 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129 , 433454.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , O. Bousquet, , R. A. Houze, , B. F. Smull, , and M. Mancini, 2003: Airflow within major Alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129 , 411431.

    • Search Google Scholar
    • Export Citation
  • Willett, S. D., 1999: Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res., 104 , 2895728981.

    • Search Google Scholar
    • Export Citation
  • Wratt, D. S., , M. J. Revell, , M. R. Sinclair, , W. R. Gray, , R. D. Henderson, , and A. M. Chater, 2000: Relationships between air mass properties and mesoscale rainfall in New Zealand’s Southern Alps. Atmos. Res., 52 , 261282.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze, 2003: Microphysical modes of precipitation growth determined by S-band vertically pointing radar in orographic precipitation during MAP. Quart. J. Roy. Meteor. Soc., 129 , 455476.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 5
PDF Downloads 39 39 5

Microphysical and Geometrical Controls on the Pattern of Orographic Precipitation

View More View Less
  • 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Patterns of orographic precipitation can vary significantly both in time and space, and such variations must ultimately be related to mountain geometry, cloud microphysics, and synoptic conditions. Here an extension of the classic upslope model is presented, which incorporates an explicit representation in the vertical dimension, represents the finite growth time of hydrometeors, their downwind advection by the prevailing wind, and also allows for evaporation. For a simple mountain geometry the authors derive an analytical solution for the precipitation rate, which can be understood in terms of four nondimensional parameters. The finite growth time and slanting hydrometeor trajectories give rise to some interesting possibilities: a precipitation rate that maximizes at intermediate values of the horizontal wind speed, localized precipitation efficiencies in excess of 100%, and a reverse rain shadow with more precipitation falling on the leeward flank than on the windward flank.

Corresponding author address: Dr. Gerard Roe, Dept. of Earth and Space Sciences, University of Washington, Seattle, WA 98195. Email: gerard@ess.washington.edu

Abstract

Patterns of orographic precipitation can vary significantly both in time and space, and such variations must ultimately be related to mountain geometry, cloud microphysics, and synoptic conditions. Here an extension of the classic upslope model is presented, which incorporates an explicit representation in the vertical dimension, represents the finite growth time of hydrometeors, their downwind advection by the prevailing wind, and also allows for evaporation. For a simple mountain geometry the authors derive an analytical solution for the precipitation rate, which can be understood in terms of four nondimensional parameters. The finite growth time and slanting hydrometeor trajectories give rise to some interesting possibilities: a precipitation rate that maximizes at intermediate values of the horizontal wind speed, localized precipitation efficiencies in excess of 100%, and a reverse rain shadow with more precipitation falling on the leeward flank than on the windward flank.

Corresponding author address: Dr. Gerard Roe, Dept. of Earth and Space Sciences, University of Washington, Seattle, WA 98195. Email: gerard@ess.washington.edu

Save