• Ahmad, S., , J. Johnson, , R. D. McPeters, , and P. K. Bhartia, 2004: TOMS version-8 data products and their applications. Proc. Quadrennial Ozone Symp., Kos, Greece, International Ozone Commission, 287–288.

  • Ajavon, A-L. N., , D. L. Albritton, , G. Megie, , and R. T. Watson, Eds. 2003: Scientific assessment of ozone depletion: 2002. WMO Global Ozone Research and Monitoring Project Rep. 47, Geneva, Switzerland.

  • Anderson Jr., D. E., , and S. A. Lloyd, 1990: Polar twilight UV-visible radiation field: Perturbations due to multiple scattering, ozone depletion, stratospheric clouds, and surface albedo. J. Geophys. Res., 95 , 74297434.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., , J. M. Russell, , S. Solomon, , and L. E. Deaver, 2000: Halogen occultation experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. J. Geophys. Res., 105 , 44834490.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., , C. G. Wellemeyer, , S. L. Taylor, , N. Nath, , and A. Gopolan, 2004: Solar backscatter ultraviolet (SBUV) version 8 profile algorithm. Proc. Quadrennial Ozone Symp., Kos, Greece, International Ozone Commission, 295–296.

  • Brueckner, G. E., , K. L. Edlow, , L. E. Floyd IV, , J. L. Lean, , and M. E. VanHoosier, 1993: The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., 98 , 1069510712.

    • Search Google Scholar
    • Export Citation
  • Chandra, S., , J. L. Lean, , O. R. White, , D. K. Prinz, , G. J. Rottman, , and G. E. Brueckner, 1995: Solar UV irradiance variability during the declining phase of the solar cycle 22. Geophys. Res. Lett., 22 , 24812484.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., , A. R. Douglass, , P. S. Connell, , D. E. Kinnison, , and D. A. Rotman, 2000: A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft. J. Geophys. Res., 105 , 39553973.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., , P. S. Connell, , D. J. Bergmann, , D. A. Rotman, , and S. E. Strahan, 2004: Sensitivity of global modeling initiative model predictions of Antarctic ozone recovery to input meteorological fields. J. Geophys. Res., 109 .D15301, doi:10.1029/2003JD004487.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., , and S. R. Kawa, 1999: Contrast between 1992 and 1997 high-latitude spring Halogen Occultation Experiment observations of lower stratospheric HCl. J. Geophys. Res., 104 , 1873918754.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., , M. R. Schoeberl, , S. R. Kawa, , and E. V. Browell, 2001: A composite view of ozone evolution in the 1995–1996 northern winter polar vortex developed from airborne lidar and satellite observations. J. Geophys. Res., 106 , 98799895.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., , M. R. Schoeberl, , R. B. Rood, , and S. Pawson, 2003: Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model. J. Geophys. Res., 108 .4259, doi:10.1029/2002JD002696.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., , R. S. Stolarski, , S. E. Strahan, , and P. J. Connell, 2004: Radicals and reservoirs in the GMI chemistry and transport model: Comparison to measurements. J. Geophys. Res., 109 .D16302, doi:10.1029/2004JD004532.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V., , G. Bodeker, , A. Miller, , R. McPeters, , and R. Stolarski, 2002: Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964-2000. J. Geophys. Res., 107 .4647, doi:10.1029/2001JD001350.

    • Search Google Scholar
    • Export Citation
  • Fiore, A., , D. J. Jacob, , H. Liu, , R. M. Yantosca, , T. D. Fairlie, , and Q. Li, 2003: Variability in surface ozone background over the United States: Implications for air quality policy. J. Geophys. Res., 108 .4787, doi:10.1029/2003JD003855.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., , C. H. Jackman, , R. S. Stolarski, , and D. B. Considine, 1999: Simulation of stratospheric tracers using an improved empirically based two-dimensional model transport formulation. J. Geophys. Res., 104 , 2391123934.

    • Search Google Scholar
    • Export Citation
  • Frith, S., , R. Stolarski, , and P. K. Bhartia, 2004: Implication of version 8 TOMS and SBUV data for long-term trend analysis. Proc. Quadrennial Ozone Symp., Kos, Greece, International Ozone Commission, 65–66.

  • Froidevaux, L., , J. W. Waters, , W. G. Read, , P. S. Connell, , D. E. Kinnison, , and J. M. Russell III, 2000: Variations in the free chlorine content of the stratosphere (1991–1997): Anthropogenic, volcanic, and methane influences. J. Geophys. Res., 105 , 44714481.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., , and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12 , 16191629.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Hadjinicolaou, P., , A. Jrrar, , J. A. Pyle, , and L. Bishop, 2002: The dynamically driven long-term trend in stratospheric ozone over northern middle latitudes. Quart. J. Roy. Meteor. Soc., 128 , 13931412.

    • Search Google Scholar
    • Export Citation
  • Harris, N., , R. Hudson, , and C. Phillips, Eds. 1998: Assessment of trends in the vertical distribution of ozone. SPARC Rep. 1, WMO-Ozone Research and Monitoring Project Rep. 43, 120 pp.

  • Hood, L. L., , J. P. McCormack, , and K. Labitzke, 1997: An investigation of dynamical contributions to midlatitude ozone trends in winter. J. Geophys. Res., 102 , 1307913093.

    • Search Google Scholar
    • Export Citation
  • Jackman, C. H., , E. R. Fleming, , S. Chandra, , D. B. Considine, , and J. E. Rosenfield, 1996: Past, present and future modeled ozone trends with comparison to observed trends. J. Geophys. Res., 101 , 2875328767.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Lin, S-J., , and R. B. Rood, 1996: Multidimensional flux form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124 , 20462070.

  • Lin, S-J., , and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow water model on the sphere. Quart. J. Roy. Meteor. Soc., 123 , 24772498.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2003: The UARS microwave limb sounder version 5 data set: Theory, characterization, and validation. J. Geophys. Res., 108 .4378, doi:10.1029/2002JD002273.

    • Search Google Scholar
    • Export Citation
  • Logan, J. A., 1999: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone. J. Geophys. Res., 104 , 1611516149.

    • Search Google Scholar
    • Export Citation
  • Madronich, S., , and G. J. M. Velders, 1998: Halocarbon scenarios for the future ozone layer and related consequences. Scientific assessment of ozone depletion: 1998, WMO Rep. 44, World Meteorological Organization Global Ozone Research and Monitoring Project, 11.1–11.36.

  • McPeters, R., , C. Wellemeyer, , and A. Ahn, 2004: The validation of version 8 ozone profiles: Is SBUV ready for prime time? Proc. Quadrennial Ozone Symp., Kos, Greece, International Ozone Commission, 113–114.

  • Olsen, M. A., , M. R. Schoeberl, , and A. R. Douglass, 2004: Stratosphere–troposphere exchange of mass and ozone. J. Geophys. Res., 109 .D24114, doi:10.1029/2004JD005186.

    • Search Google Scholar
    • Export Citation
  • Petzoldt, K., 1999: The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere. Ann. Geophys., 17 , 231241.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 1999: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39 , 71122.

  • Randel, W. J., , F. Wu, , J. M. Russell III, , J. W. Waters, , and L. Froidevaux, 1995: Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo. J. Geophys. Res., 100 , 1675316764.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and R. S. Stolarski, 2002: Changes in column ozone correlated with the stratospheric EP flux. J. Meteor. Soc. Japan, 80 , 849862.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and P. F. Callaghan, 2002: Interannual changes of the stratospheric circulation: Relationship to ozone and tropospheric structure. J. Climate, 15 , 36733685.

    • Search Google Scholar
    • Export Citation
  • Sander, S. P., Coeditors. 2003: Chemical kinetics and photochemical data for use in atmospheric studies. Jet Propulsion Laboratory Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 334 pp.

  • Schoeberl, M. R., , A. R. Douglass, , Z. K. Zhu, , and S. Pawson, 2003: A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems. J. Geophys. Res., 108 .4113, doi:10.1029/2002JD002652.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , P. Bloomfield, , R. D. McPeters, , and J. R. Herman, 1991: Total ozone trends deduced from Nimbus-7 TOMS data. Geophys. Res. Lett., 18 , 10151018.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., and Coauthors, 1995: 1995 scientific assessment of the atmospheric effects of stratospheric aircraft. NASA Ref. Publ. 1381, NASA, 105 pp.

  • Strahan, S. E., , and A. R. Douglass, 2004: Evaluating the credibility of transport processes in simulations of ozone recovery using the Global Modeling Initiative three-dimensional model. J. Geophys. Res., 109 .D05110, doi:10.1029/2003JD004238.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , R. L. Panetta, , and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOR phase space. J. Atmos. Sci., 50 , 17511762.

    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and application to environmental data. J. Geophys. Res., 103 , 1714917161.

    • Search Google Scholar
    • Export Citation
  • Weiss, A. K., , J. Staehelin, , C. Appenzeller, , and N. R. P. Harris, 2001: Chemical and dynamical contributions to ozone profile trends of the Payerne (Switzerland) balloon soundings. J. Geophys. Res., 106 , 2268522694.

    • Search Google Scholar
    • Export Citation
  • Wellemeyer, C. G., , S. L. Taylor, , C. J. Seftor, , R. D. McPeters, , and P. K. Bhartia, 1997: A correction for total ozone mapping spectrometer profile shape errors at high latitude. J. Geophys. Res., 102 , 90299038.

    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., , S. Chandra, , R. D. McPeters, , and P. A. Newman, 1997: Dynamical proxies of column ozone with applications to global trend models. J. Geophys. Res., 102 , 61176129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 9
PDF Downloads 17 17 5

Trends in Stratospheric Ozone: Lessons Learned from a 3D Chemical Transport Model

View More View Less
  • 1 Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Science Systems Applications, Inc., Lanham, Maryland
  • | 3 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and time-dependent mixing ratio boundary conditions for CFCs, halons, and other source gases such as N2O and CH4. A second CTM simulation was carried out for identical solar flux and boundary conditions but with constant “background” aerosol conditions. The GCM integration included an online ozonelike tracer with specified production and loss that was used to evaluate the effects of interannual variability in dynamics. Statistical time series analysis was applied to both observed and simulated ozone to examine the capability of the analyses for the determination of trends in ozone due to CFCs and to separate these trends from the solar cycle and volcanic effects in the atmosphere. The results point out several difficulties associated with the interpretation of time series analyses of atmospheric ozone data. In particular, it is shown that lengthening the dataset reduces the uncertainty in derived trend due to interannual dynamic variability. It is further shown that interannual variability can make it difficult to accurately assess the impact of a volcanic eruption, such as Pinatubo, on ozone. Such uncertainties make it difficult to obtain an early proof of ozone recovery in response to decreasing chlorine.

Corresponding author address: Dr. Richard Stolarski, NASA GSFC, Code 613.3, Greenbelt, MD 20771. Email: stolar@polska.gsfc.nasa.gov

Abstract

Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and time-dependent mixing ratio boundary conditions for CFCs, halons, and other source gases such as N2O and CH4. A second CTM simulation was carried out for identical solar flux and boundary conditions but with constant “background” aerosol conditions. The GCM integration included an online ozonelike tracer with specified production and loss that was used to evaluate the effects of interannual variability in dynamics. Statistical time series analysis was applied to both observed and simulated ozone to examine the capability of the analyses for the determination of trends in ozone due to CFCs and to separate these trends from the solar cycle and volcanic effects in the atmosphere. The results point out several difficulties associated with the interpretation of time series analyses of atmospheric ozone data. In particular, it is shown that lengthening the dataset reduces the uncertainty in derived trend due to interannual dynamic variability. It is further shown that interannual variability can make it difficult to accurately assess the impact of a volcanic eruption, such as Pinatubo, on ozone. Such uncertainties make it difficult to obtain an early proof of ozone recovery in response to decreasing chlorine.

Corresponding author address: Dr. Richard Stolarski, NASA GSFC, Code 613.3, Greenbelt, MD 20771. Email: stolar@polska.gsfc.nasa.gov

Save