• Acevedo, O. C., , and D. R. Fitzjarrald, 2001: The early evening surface layer transition: Temporal and spatial variability. J. Atmos. Sci., 58 , 26502667.

    • Search Google Scholar
    • Export Citation
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comp. Mach., 17 , 589602.

    • Search Google Scholar
    • Export Citation
  • André, J. C., , and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39 , 864878.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2002: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3 , 417432.

  • Andreas, E. L., , and B. B. Hicks, 2002: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.”. J. Atmos. Sci., 59 , 26052607.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , R. K. Newsom, , J. K. Lundquist, , Y. L. Pichugina, , R. L. Coulter, , and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Basu, S., , and N. Raghavan, 1986: Prediction of inversion strengths and heights from a 1-D nocturnal boundary layer model. Bound.-Layer Meteor., 35 , 193204.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The impact of some aspects of the boundary layer scheme in the ECMWF model. Proc. Seminar on Parametrization of Sub-grid Scale Physical Processes, Reading, United Kingdom, ECMWF, 125–161.

  • Beljaars, A. C. M., , and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 287–304.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., 1998: A model to predict surface temperatures. Bound.-Layer Meteor., 88 , 279306.

  • Betts, A. K., , P. Viterbo, , and A. C. M. Beljaars, 1998: Comparison of the land–surface interaction in the ECMWF reanalysis model with the 1987 FIFE data. Mon. Wea. Rev., 126 , 186198.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., , and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35 , 14271440.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Carson, D. J., , and P. J. R. Richards, 1978: Modelling surface turbulent fluxes in stable conditions. Bound.-Layer Meteor., 14 , 6781.

  • Cauchey, S. J., , J. C. Wyngaard, , and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36 , 10411052.

    • Search Google Scholar
    • Export Citation
  • Cerni, T. A., , and T. R. Parish, 1984: A radiative model of the stable nocturnal boundary layer with application to the polar night. J. Climate Appl. Meteor., 23 , 15631572.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , F. L. Ludwig, , and R. L. Street, 2004: Stably stratified flows near a notched transverse ridge across the Salt Lake Valley. J. Appl. Meteor., 43 , 13081328.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2005: A single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., , in press.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 100 , 351364.

  • Delage, Y., 1988: A parameterization of the stable atmospheric boundary layer. Bound.-Layer Meteor., 43 , 365381.

  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82 , 2348.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1995: Stable boundary-layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90 , 423446.

  • Derbyshire, S. H., 1999: Boundary layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90 , 297325.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119 , 324341.

  • Duynkerke, P. G., , and S. de Roode, 2001: Surface energy balance and turbulence characteristics observed at the SHEBA ice camp during FIRE III. J. Geophys. Res., 106 , 1531315322.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7 , 363372.

  • Estournel, C., , and D. Guedalia, 1985: Influence of geostrophic wind on atmospheric nocturnal cooling. J. Atmos. Sci., 42 , 26952698.

  • Frenzen, P., , and A. G. Vogel, 2001: Further studies of atmospheric turbulence in layers near the surface: Scaling the TKE budget above the roughness sublayer. Bound.-Layer Meteor., 99 , 173206.

    • Search Google Scholar
    • Export Citation
  • Funk, J. P., 1960: Measured radiative flux divergence near the ground at night. Quart. J. Roy. Meteor. Soc., 86 , 382389.

  • Galmarini, S., , C. Beets, , P. G. Duynkerke, , and J. Vila-Guerau de Arellano, 1998: Stable nocturnal boundary layers: A comparison of one-dimensional and large-eddy simulation models. Bound.-Layer Meteor., 88 , 181210.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garratt, J. R., , and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38 , 27302746.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , M. Sharan, , R. T. McNider, , and M. P. Singh, 1998: Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. J. Atmos. Sci., 55 , 954960.

    • Search Google Scholar
    • Export Citation
  • Ha, K. J., , and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A , 317327.

  • Hanna, S. R., , and R. Yang, 2001: Evaluation of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40 , 10951104.

    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B. G., , A. F. G. Jacobs, , A. A. M. Holtslag, , and S. M. Berkowicz, 2003: Surface energy balance closure in an arid region: Role of soil heat flux. Agric. For. Meteor., 122 , 2137.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 1998: Modeling of atmospheric boundary layers. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 85–110.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2003: GABLS initiates intercomparison for stable boundary layer case. GEWEX News, Vol. 13, No. 2, 7–8.

  • Holtslag, A. A. M., , and H. A. R. de Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27 , 689704.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Howell, J. F., , and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90 , 495520.

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Johansson, C., , A. Smedman, , U. Högström, , J. G. Brasseur, , and S. Khanna, 2001: Critical test of the validity of Monin–Obukhov similarity during convective conditions. J. Atmos. Sci., 58 , 15491566.

    • Search Google Scholar
    • Export Citation
  • Klipp, C. L., , and L. Mahrt, 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130 , 20872103.

    • Search Google Scholar
    • Export Citation
  • Kot, S. C., , and Y. Song, 1998: An improvement of the Louis scheme for the surface layer in an atmospheric modeling, system. Bound.-Layer Meteor., 88 , 239254.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Mahrt, L., 1987: Grid-averaged surface fluxes. Mon. Wea. Rev., 115 , 15501560.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Mahrt, L., , and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105 , 351363.

  • Mahrt, L., , J. Sun, , W. Blumen, , T. Delany, , and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88 , 255278.

  • Mailhot, J., , and R. Benoit, 1982: A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J. Atmos. Sci., 39 , 22492266.

    • Search Google Scholar
    • Export Citation
  • McVehil, G. E., 1964: Wind and temperature profiles near the ground in stable stratification. Quart. J. Roy. Meteor. Soc., 90 , 136146.

    • Search Google Scholar
    • Export Citation
  • Musson-Genon, L., 1987: Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon. Wea. Rev., 115 , 592607.

    • Search Google Scholar
    • Export Citation
  • Neu, U., 1995: A parameterisation of the nocturnal ozone reduction in the residual layer by vertical downward mixing during summer smog situations using sodar data. Bound.-Layer Meteor., 73 , 189193.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41 , 22022216.

  • Nieuwstadt, F. T. M., , and A. G. M. Driedonks, 1979: The nocturnal boundary layer: A case study compared with model calculations. J. Appl. Meteor., 18 , 13971405.

    • Search Google Scholar
    • Export Citation
  • Nkemdirim, L., 1978: A comparison of radiative and actual nocturnal cooling rates over grass and snow. J. Appl. Meteor., 17 , 16431646.

    • Search Google Scholar
    • Export Citation
  • Nkemdirim, L., 1988: Nighttime surface-layer temperature tendencies with and without chinooks. J. Appl. Meteor., 27 , 482489.

  • Oke, T. R., 1970: Turbulent transport near the ground in stable conditions. J. Appl. Meteor., 9 , 778786.

  • Oke, T. R., 1978: Boundary Layer Climates. Methuen and Co., 372 pp.

  • Oncley, S. P., , C. A. Friehe, , J. C. Larue, , J. A. Businger, , E. C. Itsweire, , and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near neutral conditions. J. Atmos. Sci., 53 , 10291044.

    • Search Google Scholar
    • Export Citation
  • Pattey, E., , I. B. Strachan, , R. L. Desjardins, , and J. Massheder, 2002: Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods. Agric. For. Meteor., 113 , 145158.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., , and S. P. Burns, 2003: An evaluation of bulk ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60 , 25232537.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Rama Krishna, T. V. B. P. S., , and M. Sharan, and Aditi, 2003: Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. J. Appl. Meteor., 42 , 952969.

    • Search Google Scholar
    • Export Citation
  • ReVelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Appl. Meteor., 32 , 11691180.

  • Sharan, M., , and S. G. Gopalakrishnan, 1997: Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modeling. J. Appl. Meteor., 36 , 545559.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., , and T. V. B. P. S. Rama Krishna, and Aditi, 2003: Surface-layer characteristics in the stable boundary layer with strong and weak winds. Bound.-Layer Meteor., 108 , 257288.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., 2002: The sensitivity of inversion strength to the formulation of the non-dimensional momentum and heat profiles. Norwegian Meteorological Institute, 61 pp.

  • Steeneveld, G. J., , B. J. H. van de Wiel, , and A. A. M. Holtslag, 2005: Modelling the Arctic nocturnal stable boundary layer and its coupling to the surface. Bound.-Layer Meteor., , in press.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Sun, J. D., and Coauthors, 2003a: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , S. P. Burns, , A. C. Delany, , S. P. Oncley, , T. W. Horst, , and D. H. Lenschow, 2003b: Heat balance in the nocturnal boundary layer during CASES-99. J. Appl. Meteor., 42 , 16491666.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., 1988: Radiative cooling in the nocturnal boundary layer Ph.D. thesis, Wageningen University, Wageningen, Netherlands, 107 pp.

  • Tjemkes, S. A., , and P. G. Duynkerke, 1989: The nocturnal boundary layer: Model calculations compared with observations. J. Appl. Meteor., 28 , 161175.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , R. J. Ronda, , A. F. Moene, , H. A. R. de Bruin, , and A. A. M. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59 , 942958.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , A. F. Moene, , R. J. Ronda, , H. A. R. de Bruin, , and A. A. M. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: A system dynamics approach. J. Atmos. Sci., 59 , 25672581.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , A. F. Moene, , O. K. Hartogensis, , H. A. R. de Bruin, , and A. A. M. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60 , 25092522.

    • Search Google Scholar
    • Export Citation
  • van Wijk, W. R., , and D. A. de Vries, 1963: Periodic temperature variations. Physics of Plant Environment, W. R. van Wijk, Ed., Interscience, 133–138.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., , A. Beljaars, , J. F. Mahfouf, , and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125 , 24012426.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., , and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81 , 245269.

    • Search Google Scholar
    • Export Citation
  • Welch, R. M., , M. G. Ravichandran, , and S. K. Cox, 1986: Prediction of quasi-periodic oscillations in radiation fogs. Part I: Comparison of simple similarity approaches. J. Atmos. Sci., 43 , 633651.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , and J. D. Fast, 2003: An evaluation of MM5, RAMS, and Meso Eta at sub-kilometer resolution using the VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131 , 13011322.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 8
PDF Downloads 61 61 2

Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99

View More View Less
  • 1 Meteorology and Air Quality Group, Wageningen University, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

The modeling and prediction of the stable boundary layer over land is a persistent, problematic feature in weather, climate, and air quality topics. Here, the performance of a state-of-the-art single-column boundary layer model is evaluated with observations from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) field experiment. Very high model resolution in the atmosphere and the soil is utilized to represent three different stable boundary layer archetypes, namely, a fully turbulent night, an intermittently turbulent night, and a radiative night with hardly any turbulence (all at clear skies). Each archetype represents a different class of atmospheric stability. In the current model, the atmosphere is fully coupled to a vegetation layer and the underlying soil. In addition, stability functions (local scaling) are utilized based on in situ observations.

Overall it is found that the vertical structure, the surface fluxes (apart from the intermittent character) and the surface temperature in the stable boundary layer can be satisfactorily modeled for a broad stability range (at a local scale) with the current understanding of the physics of the stable boundary layer. This can also be achieved by the use of a rather detailed coupling between the atmosphere and the underlying soil and vegetation, together with high resolution in both the atmosphere and the soil. This is especially true for the very stable nights, when longwave radiative cooling is dominant. Both model outcome and observations show that in the latter case the soil heat flux is a dominant term of the surface energy budget.

Corresponding author address: Dr. G. J. Steeneveld, Meteorology and Air Quality Group, Wageningen University, Duivendaal 2, 6701 AP Wageningen, Netherlands. Email: Gert-Jan.Steeneveld@wur.nl

Abstract

The modeling and prediction of the stable boundary layer over land is a persistent, problematic feature in weather, climate, and air quality topics. Here, the performance of a state-of-the-art single-column boundary layer model is evaluated with observations from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) field experiment. Very high model resolution in the atmosphere and the soil is utilized to represent three different stable boundary layer archetypes, namely, a fully turbulent night, an intermittently turbulent night, and a radiative night with hardly any turbulence (all at clear skies). Each archetype represents a different class of atmospheric stability. In the current model, the atmosphere is fully coupled to a vegetation layer and the underlying soil. In addition, stability functions (local scaling) are utilized based on in situ observations.

Overall it is found that the vertical structure, the surface fluxes (apart from the intermittent character) and the surface temperature in the stable boundary layer can be satisfactorily modeled for a broad stability range (at a local scale) with the current understanding of the physics of the stable boundary layer. This can also be achieved by the use of a rather detailed coupling between the atmosphere and the underlying soil and vegetation, together with high resolution in both the atmosphere and the soil. This is especially true for the very stable nights, when longwave radiative cooling is dominant. Both model outcome and observations show that in the latter case the soil heat flux is a dominant term of the surface energy budget.

Corresponding author address: Dr. G. J. Steeneveld, Meteorology and Air Quality Group, Wageningen University, Duivendaal 2, 6701 AP Wageningen, Netherlands. Email: Gert-Jan.Steeneveld@wur.nl

Save