• Anderson, T. L., , R. J. Charlson, , S. E. Schwartz, , R. Knutti, , O. Boucher, , H. Rodhe, , and J. Heintzenberg, 2003: Climate forcing by aerosols—A hazy picture. Science, 300 , 11031104.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc., 66 , 688694.

  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80 , 805820.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , S. M. Kreidenweis, , L. M. McInnes, , D. C. Rogers, , and P. J. DeMott, 1998: Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25 , 13911394.

    • Search Google Scholar
    • Export Citation
  • Claquin, T., , M. Schulz, , and Y. J. Balkanski, 1999: Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res., 104 , 2224322256.

    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., , C. Liousse, , H. Cachier, , and J. Feichter, 1999: Construction of a 1 × 1 degree fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104 , 2213722162.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , G. J. Tripoli, , R. M. Rauber, , and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , K. Sassen, , M. R. Poellot, , D. Baumgardner, , D. C. Rogers, , S. D. Brooks, , A. J. Prenni, , and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30 .1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., , and G. Vali, 1992: Atmospheric concentrations of submicron contact-freezing nuclei. J. Atmos. Sci., 49 , 773784.

  • Diehl, K., , and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61 , 20632072.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , C. Quick, , S. Matthias-Maser, , S. K. Mitra, , and R. Jaenicke, 2001: The ice nucleating ability of pollen. Part I: Laboratory studies in deposition and condensation freezing modes. Atmos. Res., 58 , 7587.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , S. Matthias-Maser, , S. K. Mitra, , and R. Jaenicke, 2002: The ice nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes. Atmos. Res., 61 , 125133.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , M. Simmel, , and S. Wurzler, 2005: Numerical simulations on the impact of aerosol properties and freezing modes on the glaciation, microphysics, and dynamics of a convective cloud. J. Geophys. Res., 110 ., in press.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., , E. Kjellström, , H. Rodhe, , F. Dentener, , J. Lelieveld, , and G-J. Roelofs, 1996: Simulation of the tropospheric sulfur cycle in a global climate model. Atmos. Environ., 30 , 16931707.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. Wood, , P. R. A. Brown, , P. H. Kaye, , E. Hirst, , R. Greenaway, , and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20 , 249261.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, B., , A. Baklanov, , N. Kakutkina, , H. L. Windsor, , and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32 , 199215.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., , G. L. Stephens, , T. H. Vonder Haar, , and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98 , 1847118488.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., , G. A. Isaac, , and S. G. Cober, 2001: Ice crystal number concentration versus temperature for climate studies. Int. J. Climatol., 21 , 12811302.

    • Search Google Scholar
    • Export Citation
  • Hess, M., , P. Koepke, , and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79 , 831844.

    • Search Google Scholar
    • Export Citation
  • Hung, H-M., , A. Malinowski, , and S. T. Martin, 2003: Kinetics of heterogeneous ice nucleation on the surfaces of mineral dust cores inserted into aqueous ammonium sulfate particles. J. Phys. Chem., A107 , 12961306.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409 , 695697.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 107 .4410, doi:10.1029/2001JD001376.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107 .4010, doi:10.1029/2001JD000470.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108 .4402, doi:10.1029/2002JD003220.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , G. A. Isaac, , and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , I. P. Mazin, , and H. W. Barker, 2001: Microphysical properties of continental clouds from in-situ measurements. Quart. J. Roy. Meteor. Soc., 127 , 21172151.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , S. G. Cober, , W. Strapp, , and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129 , 3965.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., 1961: Snow crystals and the identification of the nuclei in the northern United States of America. J. Meteor., 18 , 139150.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., , and K. E. Francis, 1962: Nuclei in snow and ice crystals on the Greenland ice cap under natural and artificially stimulated conditions. J. Atmos. Sci., 19 , 474481.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., , and S. A. Yankofsky, 1983: Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei. J. Climate Appl. Meteor., 22 , 19641966.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., , B. Rockel, , H. Kapitza, , and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65 , 3558.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002a: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29 .1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002b: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59 , 647656.

  • Lohmann, U., 2004: Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci., 61 , 24572468.

  • Lohmann, U., , and J. Feichter, 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28 , 159161.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCM. J. Geophys. Res., 107 .4105, doi:10.1029/2001JD000767.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and G. Lesins, 2002: Stronger constraints on the anthropogenic indirect aerosol effect. Science, 298 , 10121016.

  • Lohmann, U., , and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Lohmann, U., , J. Feichter, , C. C. Chuang, , and J. E. Penner, 1999: Predicting the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104 , 91699198.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , J. Feichter, , J. E. Penner, , and W. R. Leaitch, 2000: Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment. J. Geophys. Res., 105 , 1219312206.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , J. Humble, , W. R. Leaitch, , G. A. Isaac, , and I. Gultepe, 2001: Simulations of ice clouds during FIRE ACE using the CCCMA single column model. J. Geophys. Res., 106 , 1512315138.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., , and J. Maybank, 1958: Ice-nucleating properties of some natural mineral dusts. Quart. J. Roy. Meteor. Soc., 84 , 235241.

    • Search Google Scholar
    • Export Citation
  • Menon, S., , A. D. DelGenio, , D. Koch, , and G. Tselioudis, 2002: GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci., 59 , 692713.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., , and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99 , 540550.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Ramanathan, V., , P. J. Crutzen, , J. T. Kiehl, , and D. Rosenfeld, 2001: Aerosols, climate and the hydrological cycle. Science, 294 , 21192124.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of the present day climate. Tech. Rep. 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 pp.

  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon, 293 pp.

  • Sassen, K., , P. J. DeMott, , J. M. Prospero, , and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30 .1633, doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Schaller, R. C., , and N. Fukuta, 1979: Ice nucleation by aerosol-particles—experimental studies using a wedge-shaped ice thermal-diffusion chamber. J. Atmos. Sci., 36 , 17881802.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., , and G. Vali, 1976: Biogenic ice nuclei. Part I: Terrestrial and marine sources. J. Atmos. Sci., 33 , 15541564.

  • Schütz, L., , and M. Sebert, 1987: Mineral aerosols and source identification. J. Aerosol Sci., 18 , 110.

  • Sokolik, I., , and B. Toon, 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104 , 94239444.

    • Search Google Scholar
    • Export Citation
  • Stendel, M., , and K. Arpe, 1997: Evaluation of the hydrological cycle in reanalysis and observations. Tech. Rep. 228, Max-Planck Institute for Meteorology, Hamburg, Germany, 52 pp.

  • Usher, C. R., , A. E. Michel, , and V. H. Grassian, 2003: Reactions on mineral dust. Chem. Rev., 103 , 48834939.

  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102 , 87038718.

  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295 , 841844.

    • Search Google Scholar
    • Export Citation
  • Yankofsky, S. A., , Z. Levin, , T. Bertold, , and N. Sandlerman, 1981: Some basic characteristics of bacterial freezing nuclei. J. Appl. Meteor., 20 , 10131019.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: A numerical simulation of wintertime, orographic precipitation. Part 1: Description of model microphysics and numerical technique. J. Atmos. Sci., 31 , 17351748.

    • Search Google Scholar
    • Export Citation
  • Zuberi, B., , A. K. Bertram, , C. A. Cassa, , L. T. Molina, , and M. J. Molina, 2002: Heterogeneous nucleation of ice in (NH4)2SO4-H2O particles with mineral dust immersions. Geophys. Res. Lett., 29 .1504, doi:10.1029/2001GL014289.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 14
PDF Downloads 65 65 11

Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • | 2 Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
© Get Permissions
Restricted access

Abstract

New parameterizations of contact freezing and immersion freezing in stratiform mixed-phase clouds (with temperatures between 0° and −35°C) for black carbon and mineral dust assumed to be composed of either kaolinite (simulation KAO) or montmorillonite (simulation MON) are introduced into the ECHAM4 general circulation model. The effectiveness of black carbon and dust as ice nuclei as a function of temperature is parameterized from a compilation of laboratory studies. This is the first time that freezing parameterizations take the chemical composition of ice nuclei into account. The rather subtle differences between these sensitivity simulations in the present-day climate have significant implications for the anthropogenic indirect aerosol effect. The decrease in net radiation in these sensitivity simulations at the top of the atmosphere varies from 1 ± 0.3 to 2.1 ± 0.1 W m−2 depending on whether dust is assumed to be composed of kaolinite or montmorillonite. In simulation KAO, black carbon has a higher relevancy as an ice nucleus than in simulation MON, because kaolinite is not freezing as effectively as montmorillonite. In simulation KAO, the addition of anthropogenic aerosols results in a larger ice water path, a slightly higher precipitation rate, and a reduced total cloud cover. On the contrary, in simulation MON the increase in ice water path is much smaller and globally the decrease in precipitation is dominated by the reduction in warm-phase precipitation due to the indirect cloud lifetime effect.

Corresponding author address: Ulrike Lohmann, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstr. 16, 8092 Zurich, Switzerland. Email: ulrike.lohmann@env.ethz.ch

Abstract

New parameterizations of contact freezing and immersion freezing in stratiform mixed-phase clouds (with temperatures between 0° and −35°C) for black carbon and mineral dust assumed to be composed of either kaolinite (simulation KAO) or montmorillonite (simulation MON) are introduced into the ECHAM4 general circulation model. The effectiveness of black carbon and dust as ice nuclei as a function of temperature is parameterized from a compilation of laboratory studies. This is the first time that freezing parameterizations take the chemical composition of ice nuclei into account. The rather subtle differences between these sensitivity simulations in the present-day climate have significant implications for the anthropogenic indirect aerosol effect. The decrease in net radiation in these sensitivity simulations at the top of the atmosphere varies from 1 ± 0.3 to 2.1 ± 0.1 W m−2 depending on whether dust is assumed to be composed of kaolinite or montmorillonite. In simulation KAO, black carbon has a higher relevancy as an ice nucleus than in simulation MON, because kaolinite is not freezing as effectively as montmorillonite. In simulation KAO, the addition of anthropogenic aerosols results in a larger ice water path, a slightly higher precipitation rate, and a reduced total cloud cover. On the contrary, in simulation MON the increase in ice water path is much smaller and globally the decrease in precipitation is dominated by the reduction in warm-phase precipitation due to the indirect cloud lifetime effect.

Corresponding author address: Ulrike Lohmann, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstr. 16, 8092 Zurich, Switzerland. Email: ulrike.lohmann@env.ethz.ch

Save