• Babu, S. S., , S. K. Satheesh, , and K. K. Moorthy, 2002: Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys. Res. Lett., 29 .1880, doi:10.1029/2002GL015826.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., , B. J. Hubert, , J. L. Gras, , F. B. Griffiths, , and P. A. Durkee, 1998: International Global Atmospheric Chemistry (IGAC) project’s First Aerosol Characterisation Experiment (ACE-1): An Overview. J. Geophys. Res., 103 , 1629716318.

    • Search Google Scholar
    • Export Citation
  • Chandra, S., , S. K. Satheesh, , and J. Srinivasan, 2004: Can the state of mixing of black carbon aerosols explain the mystery of “excess” atmospheric absorption? Geophys. Res. Lett., 31 .L19109, doi:10.1029/2004GL020662.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , S. E. Schwartz, , J. M. Hales, , R. D. Cess, , J. A. Coakley, , J. E. Hansen, , and D. J. Hoffmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255 , 423430.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., , B. N. Holben, , O. Dubovik, , A. Smirnov, , I. Slutsker, , J. M. Lobert, , and V. Ramanathan, 2001: Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998-2000. J. Geophys. Res., 106 , 2855528566.

    • Search Google Scholar
    • Export Citation
  • Formenti, P., and Coauthors, 2002a: STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea. 1. Aerosol particles and trace gases. J. Geophys. Res., 107 .4450, doi:10.1029/2001JD001337.

    • Search Google Scholar
    • Export Citation
  • Formenti, P., and Coauthors, 2002b: STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea. 2. Aerosol scattering and absorption, and radiative calculations. J. Geophys. Res., 107 .4451, doi:10.1029/2001JD001536.

    • Search Google Scholar
    • Export Citation
  • Hess, M., , P. Koepke, , and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79 , 831844.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66 , 116.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , L. G. Meira Filho, , J. P. Bruce, , H. Lee, , B. A. Callander, , and E. F. Haites, 1995: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC. Cambridge University Press, 347 pp.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409 , 695697.

  • Kaufman, Y. J., and Coauthors, 1998: Smoke, clouds, radiation-Brazil (SCAR-B) experiment. J. Geophys. Res., 103 , 3178331808.

  • Liley, B. J., and Coauthors, 2003: Black carbon in aerosol during BIBLE B. J. Geophys. Res., 108 .8399, doi:10.1029/2001JD000845.

  • Lubin, D., , S. K. Satheesh, , G. Macfarquar, , and A. Heymsfield, 2002: The longwave radiative forcing of Indian Ocean tropospheric aerosol. J. Geophys. Res., 107 .8004, doi:10.1029/2001JD001183.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., , and S. K. Satheesh, 2000: Characteristics of aerosols over a remote island, Minicoy, in the Arabian Sea: Optical properties and retrieved size characteristics. Quart. J. Roy. Meteor. Soc., 126 , 81109.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., , S. K. Satheesh, , and B. V. Krishna Murthy, 1997: Investigations of marine aerosols over tropical Indian Ocean. J. Geophys. Res., 102 , 1882718842.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., and Coauthors, 1999: Aerosol climatology over India. 1 - ISRO GBP MWR network and database. ISRO GBP SR-03-99.

  • O’Neill, N. T., , T. F. Eck, , B. N. Holben, , A. Smirnov, , A. Royer, , and Z. Li, 2002: Optical properties of boreal forest fire smoke derived from sun photometry. J. Geophys. Res., 107 .4125, doi:10.1029/2001JD000877.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and Coauthors, 1983: The atmospheric aerosol system. Rev. Geophys. Space Phys., 21 , 16071629.

  • Quinn, P. K., and Coauthors, 2000: A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, 52B , 239257.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2001: Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106 , 2837128398.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., , S. Yang, , C. Gautier, , and D. Sowle, 1998: SBDART: A research and teaching tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79 , 21012114.

    • Search Google Scholar
    • Export Citation
  • Russell, P. B., , P. V. Hobbs, , and L. L. Stowe, 1999: Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res., 104 , 22132222.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., 2002: Aerosol radiative forcing by Indian Ocean aerosols: Effect of cloud and surface reflection. Ann. Geophys., 20 , 21052109.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., , and K. Krishna Moorthy, 1997: Aerosol characteristics over coastal regions of the Arabian Sea. Tellus, 49B , 417428.

  • Satheesh, S. K., , and V. Ramanathan, 2000: Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405 , 6063.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., , and J. Srinivasan, 2002: Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: Natural or anthropogenic? Geophys. Res. Lett., 29 .1874, doi:10.1029/2002GL015687.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., , V. Ramanathan, , X. L. Jones, , J. M. Lobert, , I. A. Podgorny, , J. M. Prospero, , B. N. Holben, , and N. G. Loeb, 1999: A model for the natural and anthropogenic aerosols for the tropical Indian Ocean derived from Indian Ocean experiment data. J. Geophys. Res., 104 , 2742127440.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., , V. Ramanathan, , B. N. Holben, , K. Krishna Moorthy, , N. G. Loeb, , H. Maring, , J. M. Prospero, , and D. Savoie, 2002: Chemical, microphysical, and radiative effects of Indian Ocean aerosols. J. Geophys. Res., 107 .4725, doi:10.1029/2002JD002463.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and Coauthors, 2004: ACE–ASIA: Regional, climatic, and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85 , 367380.

    • Search Google Scholar
    • Export Citation
  • Shaw, G. E., , J. A. Regan, , and B. M. Herman, 1973: Investigations of atmospheric extinction using direct solar radiation measurements made with a multiple wavelength radiometer. J. Appl. Meteor., 12 , 374380.

    • Search Google Scholar
    • Export Citation
  • Sumanth, E., , K. Mallikarjuna, , J. Stephen, , M. Mahesh, , V. Vinoj, , S. K. Satheesh, , and K. Krishna Moorthy, 2004: Measurements of aerosol optical depths and black carbon over Bay of Bengal during post-monsoon season. Geophys. Res. Lett., 31 .L16115, doi:10.1029/2004GL020681.

    • Search Google Scholar
    • Export Citation
  • Vinoj, V., , S. S. Babu, , S. K. Satheesh, , K. Krishna Moorthy, , and Y. J. Kaufman, 2004: Radiative forcing by aerosols over the Bay of Bengal region derived from shipborne, islandbased, and satellite (Moderate-Resolution Imaging Spectroradiometer) observations. J. Geophys. Res., 109 .D05203, doi:10.1029/2003JD004329.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 9
PDF Downloads 50 50 9

A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths

View More View Less
  • 1 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
© Get Permissions
Restricted access

Abstract

Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative forcing generally requires knowledge of its chemical composition, which is sparse. Ground-based sky radiance measurements [e.g., aerosol robotic network (AERONET)] can provide key parameters such as the single-scattering albedo, but in shipborne experiments over the ocean it is difficult to make sky radiance measurements and hence these experiments cannot provide parameters such as the single-scattering albedo. However, aerosol spectral optical depth data (cruise based as well as satellite retrieved) are available quite extensively over the ocean. Spectral optical depth measurements have been available since the 1970s, and spectral turbidity measurements (carried out at meteorological departments all over the world) have been available for several decades, while long-term continuous chemical composition information is not available. A new method to differentiate between scattering and absorbing aerosols is proposed here. This can be used to derive simple aerosol models that are optically equivalent and can simulate the observed aerosol optical properties and radiative fluxes, from spectral optical depth measurements. Thus, aerosol single-scattering albedo and, hence, aerosol radiative forcing can be estimated. Note that the proposed method is to estimate clear-sky aerosol radiative forcing (over regions where chemical composition data or sky radiance data are not available) and not to infer its exact chemical composition. Using several independent datasets from field experiments, it is demonstrated that the proposed method can be used to estimate aerosol radiative forcing (from spectral optical depths) with an accuracy of ±2 W m−2.

Corresponding author address: S. K. Satheesh, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. Email: satheesh@caos.iisc.ernet.in

Abstract

Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative forcing generally requires knowledge of its chemical composition, which is sparse. Ground-based sky radiance measurements [e.g., aerosol robotic network (AERONET)] can provide key parameters such as the single-scattering albedo, but in shipborne experiments over the ocean it is difficult to make sky radiance measurements and hence these experiments cannot provide parameters such as the single-scattering albedo. However, aerosol spectral optical depth data (cruise based as well as satellite retrieved) are available quite extensively over the ocean. Spectral optical depth measurements have been available since the 1970s, and spectral turbidity measurements (carried out at meteorological departments all over the world) have been available for several decades, while long-term continuous chemical composition information is not available. A new method to differentiate between scattering and absorbing aerosols is proposed here. This can be used to derive simple aerosol models that are optically equivalent and can simulate the observed aerosol optical properties and radiative fluxes, from spectral optical depth measurements. Thus, aerosol single-scattering albedo and, hence, aerosol radiative forcing can be estimated. Note that the proposed method is to estimate clear-sky aerosol radiative forcing (over regions where chemical composition data or sky radiance data are not available) and not to infer its exact chemical composition. Using several independent datasets from field experiments, it is demonstrated that the proposed method can be used to estimate aerosol radiative forcing (from spectral optical depths) with an accuracy of ±2 W m−2.

Corresponding author address: S. K. Satheesh, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. Email: satheesh@caos.iisc.ernet.in

Save