• Ahlgrimm, M., 2004: Diagnosing monthly mean boundary layer properties using a mixed-layer model. M.S. thesis, Dept. of Atmospheric Sciences, Colorado State University, 149 pp.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , P. Minnis, , W. Ridgway, , and D. F. Young, 1992: Integration of satellite and surface data using a radiative–convective oceanic boundary-layer model. J. Appl. Meteor., 31 , 340350.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52 , 27072723.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Chelton, D. B., , A. M. Mestas-Nuñez, , and M. H. Freilich, 1990: Global wind stress and Sverdrup circulation from the Seasat scatterometer. J. Phys. Oceanogr., 20 , 11751205.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , P. Bauer, , G. Kelly, , C. Jakob, , and T. McNally, 2001: Model clouds over oceans as seen from space: Comparison with HIRS/2 and MSU radiances. J. Climate, 14 , 42164229.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., , E. Nelkin, , J. Ardizzone, , R. M. Atlas, , and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard Satellite Retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , W. H. Schubert, , and R. H. Johnson, 2001: Diurnal variability of the marine boundary layer during ASTEX. J. Atmos. Sci., 58 , 23552376.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and C. S. Bretherton, 2004: Quasi-Lagrangian large-eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61 , 18371858.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , C. S. Bretherton, , N. A. Bond, , M. F. Cronin, , and B. Morley, 2005: Epic 95°W observations of the eastern Pacific atmospheric boundary layer from the cold tongue to the ITCZ. J. Atmos. Sci., 62 , 426442.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62 , 32683285.

    • Search Google Scholar
    • Export Citation
  • Firestone, J. K., , and B. A. Albrecht, 1986: The structure of the atmospheric boundary layer in the central equatorial Pacific during January and February of FGGE. Mon. Wea. Rev., 114 , 22192232.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , J. Rutllant, , J. Quintana, , J. Carrasco, , and P. Minnis, 2001: Cimar-5: A snapshot of the lower troposphere over the subtropical southeast Pacific. Bull. Amer. Meteor. Soc., 82 , 21932207.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , and S. G. Warren, 1999: Extended edited synoptic cloud reports from ships and land stations over the globe, 1952–1996. Numerical Data Package NDP-026C, 71 pp. [Available from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6335.].

  • Johnson, R. H., , J. F. Bresch, , P. E. Ciesielski, , and W. A. Gallus, 1993: The TOGA/COARE atmospheric sounding array: Its performance and preliminary scientific results. Preprints, 20th Conf. on Hurricanes and Tropical Meteorology, San Antonio, TX, Amer. Meteor. Soc., 1–4.

  • Kawa, S. R., , and R. Pearson, 1989: An observational study of stratocumulus entrainment and thermodynamics. J. Atmos. Sci., 46 , 26492661.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD–ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kloesel, K. A., , and B. A. Albrecht, 1989: Low-level inversions over the tropical Pacific—Thermodynamic structure of the boundary layer and the above-inversion moisture structure. Mon. Wea. Rev., 117 , 87101.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • McGauley, M., , C. Zhang, , and N. A. Bond, 2004: Large-scale characteristics of the atmospheric boundary layer in the eastern Pacific cold tongue–ITCZ region. J. Climate, 17 , 39073920.

    • Search Google Scholar
    • Export Citation
  • Neiburger, M., , D. S. Johnson, , and C. W. Chien, 1961: Studies of the structure of the atmosphere over the eastern Pacific Ocean in summer, I, The inversion over the eastern North Pacific Ocean. Univ. Calif. Publ. Meteor., 1 , 194.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7 , 19151925.

    • Search Google Scholar
    • Export Citation
  • Palm, S., , W. Hart, , and D. Hlavka, 2002: GLAS atmospheric data products. GLAS algorithm theoretical basis document, version 4.2, Science Systems and Applications, Inc., 137 pp.

  • Randall, D. A., , Q. Shao, , and M. Branson, 1998: Representation of clear and cloudy boundary layers in climate models. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Science, 305–322.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , T. C. Yeh, , J. S. Malkus, , and N. E. LaSeur, 1951: The northeast trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77 , 598626.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Stevens, B., , J. Duan, , J. C. McWilliams, , M. Munnich, , and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15 , 3044.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003a: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., and Coauthors, 2003b: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129 , 34693492.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Troen, I., , and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , R. H. Couch, , and M. P. McCormick, 1996: An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84 , 117.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., , H. F. Diaz, , J. D. Elms, , and S. J. Worley, 1998: COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517527.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , M. McGauley, , and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17 , 133139.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and Coauthors, 2002: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn., 34 , 405445.

  • Zwally, H. J., , R. Schutz, , S. Palm, , W. Hart, , S. Hlavka, , J. Spinhirne, , and E. Welton, 2005: GLAS/ICESat L2 global planetary boundary layer and elevated aerosol layer heights V019, 26 September to 18 November 2003. National Snow and Ice Data Center, digital media.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 2
PDF Downloads 10 10 1

Diagnosing Monthly Mean Boundary Layer Properties from Reanalysis Data Using a Bulk Boundary Layer Model

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The mixed-layer approach to modeling the planetary boundary layer (PBL) is particularly well suited to inversion-topped PBLs, such as the stratocumulus-topped boundary layer found off the west coast of America in the subtropical Pacific Ocean at northern and southern latitudes. However, a strong temperature inversion near 850 hPa (the trade wind inversion) is not confined to the stratocumulus regimes, but has been observed over most parts of the subtropical–tropical Pacific Ocean. In this paper, the authors test the ability of a simple bulk boundary layer model (BBLM) to diagnose entrainment velocity, cumulus mass flux, and surface latent heat flux from monthly mean reanalysis data. The PBL depth is estimated from Geoscience Laser Altimeter System data. The model is based on the conservation equations for mass, total water mixing ratio, and moist static energy.

The BBLM diagnoses entrainment velocities between 1 and 8 mm s−1 in the stratocumulus and trade wind regions, with increasing rates toward the west. Large cumulus mass fluxes (1.3–2 cm s−1) mark the ITCZ and South Pacific convergence zone. Unreasonably large surface latent heat fluxes are diagnosed in regions where the vertical resolution of both model and input data are insufficient to represent the sharp gradients of moist conservable variables and winds across the PBL top. The results demonstrate that the potential exists to extract useful information about the large-scale structure of PBL physical processes by combining available observations with simple models.

Corresponding author address: Maike Ahlgrimm, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: maike@atmos.colostate.edu

Abstract

The mixed-layer approach to modeling the planetary boundary layer (PBL) is particularly well suited to inversion-topped PBLs, such as the stratocumulus-topped boundary layer found off the west coast of America in the subtropical Pacific Ocean at northern and southern latitudes. However, a strong temperature inversion near 850 hPa (the trade wind inversion) is not confined to the stratocumulus regimes, but has been observed over most parts of the subtropical–tropical Pacific Ocean. In this paper, the authors test the ability of a simple bulk boundary layer model (BBLM) to diagnose entrainment velocity, cumulus mass flux, and surface latent heat flux from monthly mean reanalysis data. The PBL depth is estimated from Geoscience Laser Altimeter System data. The model is based on the conservation equations for mass, total water mixing ratio, and moist static energy.

The BBLM diagnoses entrainment velocities between 1 and 8 mm s−1 in the stratocumulus and trade wind regions, with increasing rates toward the west. Large cumulus mass fluxes (1.3–2 cm s−1) mark the ITCZ and South Pacific convergence zone. Unreasonably large surface latent heat fluxes are diagnosed in regions where the vertical resolution of both model and input data are insufficient to represent the sharp gradients of moist conservable variables and winds across the PBL top. The results demonstrate that the potential exists to extract useful information about the large-scale structure of PBL physical processes by combining available observations with simple models.

Corresponding author address: Maike Ahlgrimm, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: maike@atmos.colostate.edu

Save