• Allen, M. R., , and A. W. Robertson, 1996: Distinguishing modulated oscillations from colored noise in multivariate data sets. Climate Dyn., 12 , 775784.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., , P. Malguzzi, , A. Speranza, , and A. Sutera, 1986: The statistical properties of general atmospheric circulation: Observational evidence and a minimal theory of bimodality. Quart. J. Roy. Meteor. Soc., 112 , 661674.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., , and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20 , 217236.

  • Cehelsky, P., , and K. K. Tung, 1987: Theories of multiple equilibria and weather regimes–A critical reexamination. Part II: Baroclinic two-layer models. J. Atmos. Sci., 44 , 32823303.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 762779.

  • Cheng, X. H., , and J. M. Wallace, 1993: Analysis of the northern-hemisphere wintertime 500-hPa height field spatial patterns. J. Atmos. Sci., 50 , 26742696.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2003: Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci., 60 , 229246.

  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.”. Geophys. Res. Lett., 27 , 779782.

  • Dettinger, M. D., , and M. Ghil, 1998: Seasonal and interannual variations of atmospheric CO2 and climate. Tellus, 50B , 124.

  • Dole, R. M., , and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation —Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 1998: An observational study of intraseasonal poleward propagation of zonal mean flow anomalies. J. Atmos. Sci., 55 , 25162529.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13 , 23562362.

  • Feldstein, S. B., , and S. Lee, 1996: Mechanisms of zonal index variability in an aquaplanet GCM. J. Atmos. Sci., 53 , 35413555.

  • Feldstein, S. B., , and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55 , 30773086.

  • Fraedrich, K., 1986: Estimating the dimension of weather and climate attractors. J. Atmos. Sci., 43 , 419432.

  • Ghil, M., , and S. Childress, 1987: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer-Verlag, 485 pp.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and K. C. Mo, 1991a: Intraseasonal oscillations in the global atmosphere. Part I: Northern Hemisphere and Tropics. J. Atmos. Sci., 48 , 752779.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and K. C. Mo, 1991b: Intraseasonal oscillations in the global atmosphere. Part II: Southern Hemisphere. J. Atmos. Sci., 48 , 780790.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and A. W. Robertson, 2000: Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy. General Circulation Model Development: Past, Present and Future, D. Randall, Ed., Academic Press, 285–325.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , and A. W. Robertson, 2002: “Waves” vs. “particles” in the atmosphere’s phase space: A pathway to long-range forecasting? Proc. Natl. Acad. Sci., 99 , (Suppl. 1). 24932500.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , M. Kimoto, , and J. D. Neelin, 1991: Nonlinear dynamics and predictability in the atmospheric sciences. Rev. Geophys., 29 , 4655.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40 , 141.

  • Hansen, A. R., , and A. Sutera, 1995: The probability density distribution of planetary-scale atmospheric wave amplitude revisited. J. Atmos. Sci., 52 , 24632472.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1995: A PV view of zonal flow vacillation. J. Atmos. Sci., 52 , 25612576.

  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55 , 13031315.

  • Hsu, C. J., , and F. Zwiers, 2001: Climate change in recurrent regimes and modes of Northern Hemisphere atmospheric variability. J. Geophys. Res., 106 , 2014520159.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., , and M. Kimoto, 1999: Weather regimes, low-frequency oscillations, and principal patterns of variability: A perspective of extratropical low-frequency variability. J. Atmos. Sci., 56 , 26842705.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kalnay-Rivas, E., , and L. O. Merkine, 1981: A simple mechanism for blocking. J. Atmos. Sci., 38 , 20772091.

  • Keppenne, C. L., , and M. Ghil, 1993: Adaptive filtering and prediction of noisy multivariate signals: An application to subannual variability in atmospheric angular momentum. Int. J. Bifurcation Chaos, 3 , 625634.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., , and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56 , 38593873.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993a: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993b: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50 , 26452673.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., , K. Ide, , and M. Ghil, 2004: Weather regimes and preferred transition paths in a three-level quasi-geostrophic model. J. Atmos. Sci., 61 , 568587.

    • Search Google Scholar
    • Export Citation
  • Koo, S., 2001: Nonlinear aspects of atmospheric zonal-flow vacillation. Ph.D. thesis, University of California, Los Angeles, 163 pp.

  • Koo, S., , and M. Ghil, 2002: Successive bifurcations in a simple model of atmospheric zonal-flow vacillation. Chaos, 12 , 300309.

  • Koo, S., , A. W. Robertson, , and M. Ghil, 2003: Multiple regimes and low-frequency oscillations in the Southern Hemisphere’s zonal-mean flow. J. Geophys. Res., 107 .4596, doi:10.1029/2001JD001353.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , A. W. Robertson, , and M. Ghil, 2003: Low-frequency variability in a baroclinic β-channel with land–sea contrast. J. Atmos. Sci., 60 , 22672293.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , A. W. Robertson, , and M. Ghil, 2005a: Bimodal behavior in the zonal-mean flow of a baroclinic β-channel model. J. Atmos. Sci., 62 , 17461769.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , D. Kondrashov, , and M. Ghil, 2005b: Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18 , 44044424.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1970: Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98 , 708716.

    • Search Google Scholar
    • Export Citation
  • Legras, B., , and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy-zonal flow feed back in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Lott, F., , A. W. Robertson, , and M. Ghil, 2001: Mountain torques and atmospheric oscillations. Geophys. Res. Lett., 28 , 12071210.

  • Lott, F., , A. W. Robertson, , and M. Ghil, 2004a: Mountain torques and Northern Hemisphere low-frequency variability. Part I: Hemispheric aspects. J. Atmos. Sci., 61 , 12591271.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , A. W. Robertson, , and M. Ghil, 2004b: Mountain torques and Northern Hemisphere low-frequency variability. Part II: Regional aspects. J. Atmos. Sci., 61 , 12721283.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climate Change, 33 , 409445.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and F. Molteni, 1993: Toward a dynamical understanding of atmospheric weather regimes. J. Atmos. Sci., 50 , 17921818.

  • Mo, K., , and M. Ghil, 1988: Cluster analysis of multiple planetary flow regimes. J. Geophys. Res., 93D , 1092710952.

  • Molteni, F., , S. Tibaldi, , and T. N. Palmer, 1990: Regimes in the wintertime circulation over northern extratropics. 1. Observational evidence. Quart. J. Roy. Meteor. Soc., 116A , 3167.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , R. Vautard, , and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14 , 545569.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Otnes, R., , and L. Enochson, 1978: Applied Time Series Analysis. Vol. I, Wiley and Sons, 449 pp.

  • Pedlosky, J., 1981: Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci., 38 , 26262641.

  • Plaut, G., , and R. Vautard, 1994: Spells of low-frequency variability and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51 , 210236.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., , and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110 , 11051145.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., 2001: Influence of ocean–atmosphere interaction on the Arctic Oscillation in two general circulation models. J. Climate, 14 , 32403254.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 1991: The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci., 48 , 429441.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53 , 35563569.

  • Robinson, W., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57 , 415422.

  • Selten, F. M., , and G. Branstator, 2004: Preferred regime transition routes and evidence for an unstable periodic orbit in a baroclinic model. J. Atmos. Sci., 61 , 22672282.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Smyth, P., , K. Ide, , and M. Ghil, 1999: Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci., 56 , 37043723.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. M. Wallace, , and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. IEEE Proc., 70 , 10551096.

  • Thomson, D. J., 1990: Quadratic-inverse spectrum estimates: Application to paleoclimatology. Philos. Trans. Roy. Soc. London, A332 , 539597.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35 , 395424.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , B. Legras, , and M. Deque, 1988: On the source of midlatitude low-frequency variability. Part I: A statistical approach to persistence. J. Atmos. Sci., 45 , 28112843.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , K-C. Mo, , and M. Ghil, 1990: Statistical significance test for transition matrices of atmospheric Markov chains. J. Atmos. Sci., 47 , 19261931.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , P. Yiou, , and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58 , 95126.

    • Search Google Scholar
    • Export Citation
  • Von Mises, R., 1964: Mathematical Theory of Probability and Statistics. Academic Press, 694 pp.

  • Wallace, J. M., 1983: The climatological mean stationary waves: Observational evidence. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 27–53.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., , and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50 , 32443259.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 9
PDF Downloads 12 12 1

Multiple Regimes and Low-Frequency Oscillations in the Northern Hemisphere’s Zonal-Mean Flow

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
  • | 2 Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California, and Département Terre–Atmosphère–Océan and Laboratoire de Météorologie Dynamique du CNRS/IPSL, Ecole Normale Supérieure, Paris, France
© Get Permissions
Restricted access

Abstract

This paper studies multiple regimes and low-frequency oscillations in the Northern Hemisphere zonal-mean zonal flow in winter, using 55 yr of daily observational data. The probability density function estimated in the phase space spanned by the two leading empirical orthogonal functions exhibits two distinct, statistically significant maxima. The two regimes associated with these maxima describe persistent zonal-flow states that are characterized by meridional displacements of the midlatitude jet, poleward and equatorward of its time-mean position. The geopotential height anomalies of either regime have a pronounced zonally symmetric component, but largest-amplitude anomalies are located over the Atlantic and Pacific Oceans. High-frequency synoptic transients participate in the maintenance of and transitions between these regimes.

Significant oscillatory components with periods of 147 and 72 days are identified by spectral analysis of the zonal-flow time series. These oscillations are described by singular spectrum analysis and the multitaper method. The 147-day oscillation involves zonal-flow anomalies that propagate poleward, while the 72-day oscillation only manifests northward propagation in the Atlantic sector. Both modes mainly describe changes in the midlatitude jet position and intensity. In the horizontal plane though, the two modes exhibit synchronous centers of action located over the Atlantic and Pacific Oceans. The two persistent flow regimes are associated with slow phases of either oscillation.

* Current affiliation: International Research Institute for Climate Prediction, Palisades, New York

Corresponding author address: Dr. Sergey Kravtsov, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. Email: sergey@atmos.ucla.edu

Abstract

This paper studies multiple regimes and low-frequency oscillations in the Northern Hemisphere zonal-mean zonal flow in winter, using 55 yr of daily observational data. The probability density function estimated in the phase space spanned by the two leading empirical orthogonal functions exhibits two distinct, statistically significant maxima. The two regimes associated with these maxima describe persistent zonal-flow states that are characterized by meridional displacements of the midlatitude jet, poleward and equatorward of its time-mean position. The geopotential height anomalies of either regime have a pronounced zonally symmetric component, but largest-amplitude anomalies are located over the Atlantic and Pacific Oceans. High-frequency synoptic transients participate in the maintenance of and transitions between these regimes.

Significant oscillatory components with periods of 147 and 72 days are identified by spectral analysis of the zonal-flow time series. These oscillations are described by singular spectrum analysis and the multitaper method. The 147-day oscillation involves zonal-flow anomalies that propagate poleward, while the 72-day oscillation only manifests northward propagation in the Atlantic sector. Both modes mainly describe changes in the midlatitude jet position and intensity. In the horizontal plane though, the two modes exhibit synchronous centers of action located over the Atlantic and Pacific Oceans. The two persistent flow regimes are associated with slow phases of either oscillation.

* Current affiliation: International Research Institute for Climate Prediction, Palisades, New York

Corresponding author address: Dr. Sergey Kravtsov, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. Email: sergey@atmos.ucla.edu

Save