• Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Berry, E. X., 1968: Modification of the warm rain process. Preprints, First National Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc., 81–88.

  • Boucher, O., , H. L. Treut, , and M. B. Baker, 1995: Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical process. J. Geophys. Res., 100D , 1639516414.

    • Search Google Scholar
    • Export Citation
  • Chen, C., , and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci., 44 , 29512977.

  • Chen, J., , and S. Liu, 2004: Physically based two-moment bulk water parameterizations for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130 , 5178.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M. Yao, , W. Kovari, , and K. K. Lo, 1996: A prognostic cloud water parameterization for climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khairoutdinov, M., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61 , 15391548.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and P. H. Daum, 2005: Reply. J. Atmos. Sci., 62 , 30073008.

  • Liu, Y., , P. H. Daum, , and R. McGraw, 2004: An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31 .L06121, doi:10.1029/2003GL019117.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , P. H. Daum, , and R. McGraw, 2005: Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett., 32 .L11811, doi:10.1029/2005GL022636.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and J. Feichter, 1997: Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM. J. Geophys. Res., 102D , 1368513700.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31 , 10401052.

  • McGraw, R., , and Y. Liu, 2003: Kinetic potential and barrier crossing: A model for warm cloud drizzle formation. Phys. Rev. Lett., 90 , 1850118514.

    • Search Google Scholar
    • Export Citation
  • McGraw, R., , and Y. Liu, 2004: Analytic formulation and parameterization of the kinetic potential theory for drizzle formation. Phys. Rev., E70 , 031601-1031606-13.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., , I. Geresdi, , G. Thompson, , K. Manning, , and E. Karplus, 2002: Freezing drizzle formation in stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation and ice initiation. J. Atmos. Sci., 59 , 837859.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of the autoconversion parameterizations in climate models. J. Geophys. Res., 105D , 1549515507.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , and Y. Liu, 2005: A smaller global estimate of the second indirect aerosol effect. Geophys. Res. Lett., 32 .L05708, doi:10.1029/2004GL021922.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59-60 , 265281.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 30343050.

  • Wood, R., , and P. N. Blossey, 2005: Comments on “Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations.”. J. Atmos. Sci., 62 , 30033006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 6
PDF Downloads 25 25 3

Parameterization of the Autoconversion Process. Part II: Generalization of Sundqvist-Type Parameterizations

View More View Less
  • 1 Brookhaven National Laboratory, Upton, New York
  • | 2 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Existing Sundqvist-type parameterizations, which only consider dependence of the autoconversion rate on cloud liquid water content, are generalized to explicitly account for the droplet concentration and relative dispersion of the cloud droplet size distribution as well. The generalized Sundqvist-type parameterization includes the more commonly used Kessler-type parameterization as a special case, unifying the two different types of parameterizations for the autoconversion rate. The generalized Sundqvist-type parameterization is identical with the Kessler-type parameterization presented in Part I beyond the autoconversion threshold, but exhibits a more realistic, smooth transition in the vicinity of the autoconversion threshold (threshold behavior) in contrast to the discontinuously abrupt transition embodied in the Kessler-type parameterization. A new Sundqvist-type parameterization is further derived by applying the expression for the critical radius derived from the kinetic potential theory to the generalized Sundqvist-type parameterization. The new parameterization eliminates the need for defining the driving radius and for prescribing the critical radius associated with Kessler-type parameterizations. The two-part structure of the autoconversion process raises questions regarding model-based empirical parameterizations obtained by fitting simulation results from detailed collection models with a single function.

Corresponding author address: Yangang Liu, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 815E, 75 Rutherford Dr., Upton, NY 11973-5000. Email: lyg@bnl.gov

Abstract

Existing Sundqvist-type parameterizations, which only consider dependence of the autoconversion rate on cloud liquid water content, are generalized to explicitly account for the droplet concentration and relative dispersion of the cloud droplet size distribution as well. The generalized Sundqvist-type parameterization includes the more commonly used Kessler-type parameterization as a special case, unifying the two different types of parameterizations for the autoconversion rate. The generalized Sundqvist-type parameterization is identical with the Kessler-type parameterization presented in Part I beyond the autoconversion threshold, but exhibits a more realistic, smooth transition in the vicinity of the autoconversion threshold (threshold behavior) in contrast to the discontinuously abrupt transition embodied in the Kessler-type parameterization. A new Sundqvist-type parameterization is further derived by applying the expression for the critical radius derived from the kinetic potential theory to the generalized Sundqvist-type parameterization. The new parameterization eliminates the need for defining the driving radius and for prescribing the critical radius associated with Kessler-type parameterizations. The two-part structure of the autoconversion process raises questions regarding model-based empirical parameterizations obtained by fitting simulation results from detailed collection models with a single function.

Corresponding author address: Yangang Liu, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 815E, 75 Rutherford Dr., Upton, NY 11973-5000. Email: lyg@bnl.gov

Save