• Ackerman, B., 1967: The nature of the meteorological fluctuations in clouds. J. Appl. Meteor, 6 , 6171.

  • Batchelor, G. K., 1953: The Theory of Homogenous Turbulence. Cambridge University Press, 197 pp.

  • Biltoft, C. A., 2001: Some thoughts on local isotropy and the 4/3 lateral to longitudinal velocity spectrum ratio. Bound.-Layer Meteor, 100 , 393404.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., , W. J. Plant, , and W. C. Keller, 1989: The Naval Research Laboratory's air–sea interaction blimp experiment. Bull. Amer. Meteor. Soc, 70 , 354364.

    • Search Google Scholar
    • Export Citation
  • Böttcher, F., , C. Renner, , H-P. Waldl, , and J. Peinke, 2003: On the statistics of wind gusts. Bound.-Layer Meteor, 108 , 163173.

  • Brenguier, J-L., 1993: Observations of cloud microstructure at the centimeter scale. J. Appl. Meteor, 32 , 783793.

  • Brenguier, J-L., , T. Bourrianne, , A. A. Coelho, , J. Isbert, , R. Peytavi, , D. Trevarin, , and P. Weschler, 1998: Improvements of droplet size distribution measurements with the fast-FSSP (forward scattering spectrometer probe). J. Atmos. Oceanic Technol, 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Champagne, F. H., , C. A. Friehe, , J. C. LaRue, , and J. Wyngaard, 1977: Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci, 34 , 515530.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and Coauthors, 2004: The BALTEX Bridge Campaign: An integrated approach for a better understanding of clouds. Bull. Amer. Meteor. Soc, 85 , 15651584.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , A. A. Hinton, , K. E. Prada, , J. E. Hare, , and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol, 15 , 547562.

    • Search Google Scholar
    • Export Citation
  • Elgobashi, S., , and C. Truesdell, 1993: On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids, 5 , 17901801.

    • Search Google Scholar
    • Export Citation
  • Ferrante, A., , and S. Elgobashi, 2003: On the physical mechanisms of two-way coupling in particle laden isotropic turbulence. Phys. Fluids, 15 , 315329.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., , Y. Meillier, , M. L. Jensen, , and B. Balsley, 2004: A statistical description of small-scale turbulence in the low-level nocturnal jet. J. Atmos. Sci, 61 , 10791085.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence—The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Gerber, H., 1986: Tethered balloon measurements at San Nicolas Island (Oct. 1984): Instrumentation, data summary, preliminary data interpretation. NRL Tech. Rep. 8972, Naval Research Laboratory, Atmospheric Physics Branch, Space Science Division, 29 pp.

  • Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser-diffraction instrument. Appl. Opt, 30 , 48244831.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., , B. G. Arends, , and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res, 31 , 235252.

  • Gerber, H., , J. B. Jensen, , A. B. Davis, , A. Mashak, , and W. J. Wiscombe, 2001: Spectral density of cloud liquid water content at high frequencies. J. Atmos. Sci, 58 , 497503.

    • Search Google Scholar
    • Export Citation
  • Haman, K., , S. P. Malinowski, , A. Makulski, , B. D. Struś, , R. Busen, , A. Stefko, , and H. Siebert, 2000: A family of ultrafast aircraft thermometers for warm and supercooled clouds and various types of aircraft. Preprints, 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Commission on Clouds and Precipitation, 224–227.

  • Haman, K. E., , S. P. Malinowski, , B. D. Struś, , R. Busen, , and A. Stefko, 2001: Two new types of ultrafast aircraft thermometer. J. Atmos. Oceanic Technol, 18 , 117134.

    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 2002: Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech, 452 , 361370.

  • Kaimal, J. C., , and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

  • Kaimal, J. C., , J. C. Wyngaard, , and D. A. Haugen, 1968: Deriving power spectra from a three-component sonic anemometer. J. Appl. Meteor, 7 , 827837.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , J. C. Wyngaard, , Y. Izumi, , and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc, 98 , 563589.

    • Search Google Scholar
    • Export Citation
  • Kaneda, Y., , T. Ishihara, , M. Yokokawa, , K. Itakura, , and A. Uno, 2003: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids, 15 .L21–L24, doi:10.1063/1.1539855.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., , and S. J. Caughey, 1981: Tethered-balloon observations of the structure of small cumulus clouds. Quart. J. Roy. Meteor. Soc, 107 , 853874.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30 , 301304.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech, 13 , 8285.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1986: Aircraft measurements in the boundary layer. Probing the Atmospheric Boundary Layer, D. H. Lenschow, Ed., Amer. Meteor. Soc., 239 pp.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , M. Zhou, , X. Zeng, , L. Chen, , and X. Xu, 2000: Measurements of fine-scale structures at the top of marine stratocumulus. Bound.-Layer Meteor, 97 , 331357.

    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., , and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor, 16 , 8190.

  • Muschinski, A., , R. G. Frehlich, , M. L. Jensen, , R. Hugo, , A. M. Hoff, , F. Eaton, , and B. B. Balsley, 2001: Fine-scale measurements of turbulence in the lower troposphere: An intercomparison between a kite- and balloon-borne and a helicopterborne measurement system. Bound.-Layer Meteor, 98 , 219250.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., , R. G. Frehlich, , and B. B. Balsley, 2004: Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J. Fluid Mech, 515 , 319351.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc, 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., , and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc, 112 , 431460.

    • Search Google Scholar
    • Export Citation
  • Oboukhov, A. M., 1962: Some specific features of atmospheric turbulence. J. Fluid Mech, 13 , 7781.

  • Oncley, S., , C. A. Friehe, , J. C. Larue, , J. A. Businger, , E. C. Itsweire, , and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci, 53 , 10291043.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., , and A. P. Khain, 2004: Collision of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci, 61 , 19261939.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., , W. C. Keller, , V. Hesany, , K. Hayes, , K. W. Hoppel, , and T. V. Blanc, 1998: Measurements of the marine boundary layer from an airship. J. Atmos. Oceanic Technol, 15 , 14331458.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Saddoughi, S. G., , and S. V. Veeravalli, 1994: Local isotropy in turbulent boundary layers at high Reynolds numbers. J. Fluid Mech, 268 , 333372.

    • Search Google Scholar
    • Export Citation
  • Schmidt, S., , K. Lehmann, , and M. Wendisch, 2004: Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP. J. Atmos. Oceanic Technol, 21 , 18551867.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2000: Supersaturation intermittency in turbulent clouds. J. Atmos. Sci, 57 , 34523456.

  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech, 35 , 183227.

  • Shaw, R. A., , and S. P. Oncley, 2001: Acceleration intermittency and enhanced collision kernels in turbulent clouds. Atmos. Res, 59–60 , 7787.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., , W. C. Reade, , L. R. Collins, , and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci, 55 , 19651976.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., , and U. Teichmann, 2000: The behaviour of an ultrasonic under cloudy conditions. Bound.-Layer Meteor, 94 , 165169.

  • Siebert, H., , and A. Muschinski, 2001: Relevance of a tuning-fork effect for temperature measurements with the Gill Solent HS ultrasonic anemometer-thermometer. J. Atmos. Oceanic Technol, 18 , 13671376.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., , M. Wendisch, , T. Conrath, , U. Teichmann, , and J. Heintzenberg, 2003: A new tethered balloon-borne payload for fine-scale observations in the cloudy boundary layer. Bound.-Layer Meteor, 106 , 461482.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., , and P. P. Jonas, 1995: Observations of the turbulent fluxes in fields of cumulus clouds. Quart. J. Roy. Meteor. Soc, 121 , 11851208.

    • Search Google Scholar
    • Export Citation
  • Squires, K. D., , and J. K. Eaton, 1991: Preferential concentration of particles by turbulence. Phys. Fluids, 3 , 11691178.

  • Sreenivasan, K. R., , and R. A. Antonia, 1997: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech, 29 , 435472.

  • Telford, J. W., , and J. Warner, 1962: On the measurement from aircraft of buoyancy and vertical air velocity in cloud. J. Atmos. Sci, 19 , 415423.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., , and M. K. Yau, 2000: Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc, 81 , 285298.

    • Search Google Scholar
    • Export Citation
  • Vohl, O., , S. K. Mitra, , S. Wurzler, , and H. R. Pruppacher, 1999: A wind tunnel study of the effect of turbulence on the growth of cloud drops by collision and coalescence. J. Atmos. Sci, 56 , 40884099.

    • Search Google Scholar
    • Export Citation
  • Willis, G. E., , and J. W. Deardorff, 1976: On the use of Taylor's translation hypothesis for diffusion in the mixed layer. Quart. J. Roy. Meteor. Soc, 102 , 817822.

    • Search Google Scholar
    • Export Citation
  • Wills, J. A. B., , and L. R. Cole, 1986: Model studies of wind flow distortion on an AI600 airship. Tech. Rep. 45046, British Maritime Technology, Middlesex, United Kingdom, 15 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 21
PDF Downloads 81 81 19

Observations of Small-Scale Turbulence and Energy Dissipation Rates in the Cloudy Boundary Layer

View More View Less
  • 1 Leibniz-Institute for Tropospheric Research, Leipzig, Germany
© Get Permissions
Restricted access

Abstract

Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates are ∼10−3 m2 s−3 for both datasets. Estimated Taylor Reynolds numbers (Reλ) are ∼104, which indicates the turbulence is fully developed. The ratios between longitudinal and transversal S( f ) converge to a value close to 4/3, which is predicted by classical turbulence theory for local isotropic conditions. Probability density functions (PDFs) of wind velocity increments Δu are derived. The PDFs show significant deviations from a Gaussian distribution with longer tails typical for an intermittent flow. Local energy dissipation rates ετ are derived from subsequences with a duration of τ = 1 s. With a mean horizontal wind velocity of 8 m s−1, τ corresponds to a spatial scale of 8 m. The PDFs of ετ can be well approximated with a lognormal distribution that agrees with classical theory. Maximum values of ετ ≈ 10−1 m2 s−3 are found in the analyzed clouds. The consequences of this wide range of ετ values for particle–turbulence interaction are discussed.

Corresponding author address: Holger Siebert, Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Abstract

Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates are ∼10−3 m2 s−3 for both datasets. Estimated Taylor Reynolds numbers (Reλ) are ∼104, which indicates the turbulence is fully developed. The ratios between longitudinal and transversal S( f ) converge to a value close to 4/3, which is predicted by classical turbulence theory for local isotropic conditions. Probability density functions (PDFs) of wind velocity increments Δu are derived. The PDFs show significant deviations from a Gaussian distribution with longer tails typical for an intermittent flow. Local energy dissipation rates ετ are derived from subsequences with a duration of τ = 1 s. With a mean horizontal wind velocity of 8 m s−1, τ corresponds to a spatial scale of 8 m. The PDFs of ετ can be well approximated with a lognormal distribution that agrees with classical theory. Maximum values of ετ ≈ 10−1 m2 s−3 are found in the analyzed clouds. The consequences of this wide range of ετ values for particle–turbulence interaction are discussed.

Corresponding author address: Holger Siebert, Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Save