• Auriol, F., , J-F. Gayet, , G. Febvre, , O. Jourdan, , L. Labonnote, , and G. Brogniez, 2001: In situ observations of cirrus cloud scattering phase function with 22° and 46° halos: Cloud field study on 19 February 1998. J. Atmos. Sci, 58 , 33763390.

    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., , and B. D. Swanson, 2000: Laboratory measurements of light scattering by single levitated ice crystals. J. Atmos. Sci, 57 , 20942104.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2004: On the scattering and absorption properties of cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer, 89 , 1736.

  • Baran, A. J., , V. N. Shcherbakov, , B. A. Baker, , J-F. Gayet, , and P. R. Lawson, 2005: On the scattering phase function of non-symmetric ice crystals. Quart. J. Roy. Meteor. Soc, 131 , 26092616.

    • Search Google Scholar
    • Export Citation
  • Barkey, B., , M. Bailey, , K-N. Liou, , and J. Hallett, 2002: Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber. Appl. Opt, 41 , 57925796.

    • Search Google Scholar
    • Export Citation
  • Cox, C., , and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Amer, 44 , 838850.

    • Search Google Scholar
    • Export Citation
  • Dodson, B., 1994: Weibull Analysis. American Society for Quality Control, 256 pp.

  • Gayet, J-F., , O. Crepel, , J-F. Fournol, , and S. Oshchepkov, 1997: A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design. Ann. Geophys, 15 , 451459.

    • Search Google Scholar
    • Export Citation
  • Gayet, J. F., and Coauthors, 1998: In situ measurements of the scattering phase function of stratocumulus, contrails, and cirrus. Geophys. Res. Lett, 25 , 971974.

    • Search Google Scholar
    • Export Citation
  • Gayet, J-F., , S. Asano, , A. Yamazaki, , A. Uchiyama, , A. Sinyuk, , O. Jourdan, , and F. Auriol, 2002: Two case studies of continental-type water and maritime mixed-phased stratocumuli over the sea. Part I: Microphysical and optical properties. J. Geophys. Res, 107 .4569, doi:10.1029/2001JD001106.

    • Search Google Scholar
    • Export Citation
  • Herbert, G. A., , E. R. Green, , J. M. Harris, , G. L. Koenig, , S. J. Roughton, , and K. W. Thaut, 1986: Control and monitoring instrumentation for the continuous measurement of atmospheric CO2 and meteorological variables. J. Atmos. Oceanic Technol, 3 , 414421.

    • Search Google Scholar
    • Export Citation
  • Hesse, E., , and Z. Ulanowski, 2003: Scattering from long prisms computed using ray tracing combined with diffraction on facets. J. Quant. Spectrosc. Radiat. Transfer, 79-80 , 721732.

    • Search Google Scholar
    • Export Citation
  • Jourdan, O., , S. Oshchepkov, , J-F. Gayet, , V. Shcherbakov, , and H. Isaka, 2003: Statistical analysis of cloud light scattering and microphysical properties obtained from airborne measurements. J. Geophys. Res, 108 .4155, doi:10.1029/2002JD002723.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and A. W. Hogan, 1979: Properties of diamond dust type ice crystals observed in summer season at Amundsen-Scott South Pole Station, Antarctica. J. Meteor. Soc. Japan, 57 , 180190.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., , J. M. Edwards, , and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res, 105 , 1006310079.

    • Search Google Scholar
    • Export Citation
  • Labonnote, L., , G. Brogniez, , M. Doutriaux-Boucher, , J-C. Buriez, , J-F. Gayet, , and H. Chepfer, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett, 27 , 113116.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 1997: Improved measurements in the mixed clouds and implication to cloud modeling. Proc. WMO Workshop on Measurements of Cloud Properties for Forecast of Weather and Climate, Mexico City, Mexico, WMO, 139–158.

  • Lawson, R. P., , A. J. Heymsfield, , S. M. Aulenbach, , and T. L. Jensen, 1998: Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS. Geophys. Res. Lett, 25 , 13311334.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. A. Baker, , and C. G. Schmitt, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res, 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11671199.

  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford University Press, 487 pp.

  • Macke, A., , J. Mueller, , and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci, 53 , 28132825.

  • Macke, A., , M. I. Mishchenko, , and B. Cairns, 1996b: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res, 101 , 2331123316.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , and A. Macke, 1999: How big should hexagonal ice crystals be to produce halos? Appl. Opt, 38 , 16261629.

  • Mishchenko, M. I., , D. J. Wielaard, , and B. E. Carlson, 1997: T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates. Geophys. Res. Lett, 24 , 771774.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , J. W. Hovenier, , and L. D. Travis, Eds. 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.

    • Search Google Scholar
    • Export Citation
  • Pluchino, A., 1986: Observations of halo scattering from single ice crystals. Opt. Lett, 11 , 276278.

  • Rao, R. M., , and A. S. Bopardikar, 1998: Wavelet Transforms: Introduction to Theory & Applications. Book and disk ed. Prentice Hall, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , S-C. Tsay, , P. W. Stackhouse Jr., , and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci, 47 , 17421754.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., , E. Hesse, , P. H. Kaye, , A. J. Baran, , and R. Chandrasekhar, 2003: Scattering of light from atmospheric ice analogues. J. Quant. Spectrosc. Radiat. Transfer, 79-80C , 10911102.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt, 23 , 12061225.

  • Yang, P., , and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contr. Atmos. Phys, 71 , 223248.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 5
PDF Downloads 29 29 3

Light Scattering by Single Natural Ice Crystals

View More View Less
  • 1 Institute of Physics, Minsk, Belarus, and OPGC, Laboratoire de Météorologie Physique, UMR/CNRS 6016, Université Blaise Pascal, Clermont-Ferrand, France
  • | 2 Laboratoire de Météorologie Physique, UMR/CNRS 6016, Université Blaise Pascal, Clermont-Ferrand, France
  • | 3 SPEC Inc., Boulder, Colorado
© Get Permissions
Restricted access

Abstract

During the South Pole Ice Crystal Experiment, angular scattering intensities (ASIs) of single ice crystals formed in natural conditions were measured for the first time with the polar nephelometer instrument. The microphysical properties of the ice crystals were simultaneously obtained with a cloud particle imager. The observations of the scattering properties of numerous ice crystals reveal high variability of the ASIs in terms of magnitude and distribution over scattering angles. To interpret observed ASI features, lookup tables were computed with a modified ray tracing code, which takes into account the optical geometry of the polar nephelometer. The numerical simulations consider a wide range of input parameters for the description of the ice crystal properties (particle orientation, aspect ratio, surface roughness, and internal inclusions). A new model of surface roughness, which assumes the Weibull statistics, was proposed. The simulations reproduce the overwhelming majority of the observed ASIs features and trace very well the quasi-specular reflection from crystal facets. The discrepancies observed between the model and the experimental data correspond to the rays, which pass through the ice crystal and are scattered toward the backward angles. This feature may be attributed to the internal structure of the ice crystals that should be considered in modeling refinements.

Corresponding author address: Dr. J.-F. Gayet, Laboratoire de Météorologie Physique, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubiére CEDEX, France. Email: J.F.Gayet@opgc.univ-bpclermont.fr

Abstract

During the South Pole Ice Crystal Experiment, angular scattering intensities (ASIs) of single ice crystals formed in natural conditions were measured for the first time with the polar nephelometer instrument. The microphysical properties of the ice crystals were simultaneously obtained with a cloud particle imager. The observations of the scattering properties of numerous ice crystals reveal high variability of the ASIs in terms of magnitude and distribution over scattering angles. To interpret observed ASI features, lookup tables were computed with a modified ray tracing code, which takes into account the optical geometry of the polar nephelometer. The numerical simulations consider a wide range of input parameters for the description of the ice crystal properties (particle orientation, aspect ratio, surface roughness, and internal inclusions). A new model of surface roughness, which assumes the Weibull statistics, was proposed. The simulations reproduce the overwhelming majority of the observed ASIs features and trace very well the quasi-specular reflection from crystal facets. The discrepancies observed between the model and the experimental data correspond to the rays, which pass through the ice crystal and are scattered toward the backward angles. This feature may be attributed to the internal structure of the ice crystals that should be considered in modeling refinements.

Corresponding author address: Dr. J.-F. Gayet, Laboratoire de Météorologie Physique, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubiére CEDEX, France. Email: J.F.Gayet@opgc.univ-bpclermont.fr

Save