• Baker, M., , R. E. Breidenthal, , T. W. Choularton, , and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci, 41 , 299304.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , W. Strapp, , and J. E. Dye, 1985: Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol, 2 , 626632.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor, 32 , 626641.

  • Blyth, A. M., , W. A. Cooper, , and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci, 45 , 39443964.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., , S. G. Lasher-Trapp, , and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc, 131 , 11711190.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., 1989: Coincidence and dead-time corrections for particle counters. Part II: High concentration measurements with an FSSP. J. Atmos. Oceanic Technol, 6 , 585598.

    • Search Google Scholar
    • Export Citation
  • Brown, E. N., 1993: Measurement uncertainties of the NCAR air motion systems. Tech. Rep. NCAR/TN-386-STR, Research Aviation Facility, Atmospheric Technology Division, National Center for Atmospheric Research, Boulder, CO.

  • Carpenter, R. L. J., , K. K. Droegemeier, , and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci, 55 , 34403455.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol, 5 , 823832.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., , and A. R. Rodi, 1982: Cloud droplet spectra in summertime cumulus clouds. Preprints, Conf. on Cloud Physics, Chicago, IL, Amer. Meteor. Soc., 147–150.

  • Cotton, W. R., , and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Damiani, R., 2005: The Structure of Thermals in Cumulus from Airborne Dual-Doppler Radar Observations. Ph.D. thesis, University of Wyoming, Laramie, WY, 293 pp.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 1984: Entrainment into a fully developed two-dimensional shear layer. AIAA Paper 84-0368.

  • Dye, J. E., , and D. Baumgardner, 1984: Evaluation of the forward scattering spectrometer probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol, 1 , 329344.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986a: Early electrification and precipitation development in a small isolated montana cumulonimbus. J. Geophys. Res, 91 , 12311247.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986b: Early electrification and precipitation development in a small isolated montana cumulonimbus. J. Geophys. Res, 91 , 67476750.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1981: A similarity theory for unsaturated downdrafts within clouds. J. Atmos. Sci, 38 , 15411557.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press Inc., 580 pp.

  • French, J. R., , G. Vali, , and R. D. Kelly, 1999: Evolution of small cumulus clouds in Florida: Observations of pulsating growth. Atmos. Res, 52 , 143165.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., , B. G. Arends, , and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res, 31 , 235252.

  • Grabowski, W. W., , and T. L. Clark, 1991: Cloud-environment interface instability. Part I: Rising thermals calculations in two spatial dimensions. J. Atmos. Sci, 48 , 527546.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and T. L. Clark, 1993: Cloud-environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci, 50 , 555573.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci, 42 , 25232549.

  • Johari, H., 1989: An experimental investigation of mixing in buoyant flows. Ph.D. thesis, University of Washington, 110 pp.

  • Johari, H., 1992: Mixing in thermals with and without buoyancy reversal. J. Atmos. Sci, 49 , 14121426.

  • Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res, 25 , 105127.

  • Kitchen, M., , and S. J. Caughey, 1981: Tethered-balloon observations of the structure of small cumulus clouds. Quart. J. Roy. Meteor. Soc, 107 , 853874.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., , and T. L. Clark, 1985: Dynamics of the cloud-environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci, 42 , 26212642.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array probe: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor, 9 , 86103.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., , B. A. Albrecht, , R. Lhermitte, , and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci, 58 , 17501766.

    • Search Google Scholar
    • Export Citation
  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds. J. Atmos. Sci, 16 , 653662.

  • Lundgren, T. S., , J. Yao, , and N. N. Mansour, 1992: Microburst modeling and scaling. J. Fluid Mech, 239 , 461488.

  • MacPherson, J. I., , and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor, 16 , 8190.

  • Ovtchinnikov, M., , Y. L. Kogan, , and A. Blyth, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part II: case study of New Mexico cumulus clouds. J. Atmos. Sci, 57 , 30043020.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci, 36 , 24672478.

  • Pazmany, A., , R. E. McIntosh, , G. Vali, , and R. D. Kelly, 1994: An airborne 95 GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens, 32 , 731739.

    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., 1986: A historical review of cumulus entrainment studies. Bull. Amer. Meteor. Soc, 67 , 151154.

  • Sanchez, O., , D. Raymond, , L. Libersky, , and A. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci, 46 , 27082718.

  • Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech, 2 , 583594.

  • Scorer, R. S., , and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc, 79 , 94103.

  • Shariff, K., , and A. Leonard, 1992: Vortex rings. Annu. Rev. Fluid Mech, 24 , 235279.

  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10 , 381389.

  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci, 49 , 13341347.

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor, 4 , 9194.

  • Takaya, Y., 1993: The motion of uneven structure of convective clouds. J. Atmos. Sci, 50 , 574587.

  • Telford, J. W., 1988: A theoretical solution to the motion of an atmospheric spherical vortex. J. Atmos. Sci, 45 , 789802.

  • Turner, J. S., 1957: Buoyant vortex rings. Proc. Roy. Meteor. Soc, 239 , 6175.

  • Turner, J. S., 1962: The ‘starting plume’ in neutral surroundings. J. Fluid Mech, 13 , 356368.

  • Vali, G., , and S. Haimov, 2001: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens, 39 , 190193.

  • Warner, J., 1977: Time variation of updraft and water content in small cumulus clouds. J. Atmos. Sci, 34 , 13061312.

  • Wilson, J. W., , R. D. Roberts, , C. Kessinger, , and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor, 23 , 898915.

    • Search Google Scholar
    • Export Citation
  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc, 85 , 144151.

  • Zhao, M., , and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci, 62 , 12911310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 18
PDF Downloads 47 47 8

The Structure of Thermals in Cumulus from Airborne Dual-Doppler Radar Observations

View More View Less
  • 1 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

A newly developed technique for airborne dual-Doppler observations with the Wyoming Cloud Radar is used to characterize the velocity fields in vertical planes across cumulus turrets. The clouds sampled were continental in nature, with high bases (near 0°C) and with depths of 2–3 km. Clear evidence was found that the clouds evolved through sequences of bubbles, or thermals, with well-defined toroidal circulations, or vortex rings. The ring core and tube diameters were about 200–600 m, leading to turret sizes of 1–2 km in the horizontal. The largest updraft speeds were observed in the ring centers, but regions of turbulent, ascending air extended behind the thermals to distances comparable with the toroid sizes. Vertical shear of ambient winds, when present, led to a tilting of the updrafts and toroids. Patterns in the reflectivity and velocity fields indicated regions of major intrusions into the thermals, accompanied by entrainment of ambient air, or recycling of larger hydrometeors, depending on their location. In addition, at the upper cloud/environment interface, instability nodes contributed to further entrapment of cloud-free air. The observations presented in this paper constitute clear demonstrations and quantitative characterization of vortical circulations in growing cumulus turrets; they should provide a more reliable basis for the assessment of simulations and of model parameterizations.

Corresponding author address: Rick Damiani, 1000 E. University Ave., University of Wyoming, Laramie, WY 82071. Email: rickdami@uwyo.edu

Abstract

A newly developed technique for airborne dual-Doppler observations with the Wyoming Cloud Radar is used to characterize the velocity fields in vertical planes across cumulus turrets. The clouds sampled were continental in nature, with high bases (near 0°C) and with depths of 2–3 km. Clear evidence was found that the clouds evolved through sequences of bubbles, or thermals, with well-defined toroidal circulations, or vortex rings. The ring core and tube diameters were about 200–600 m, leading to turret sizes of 1–2 km in the horizontal. The largest updraft speeds were observed in the ring centers, but regions of turbulent, ascending air extended behind the thermals to distances comparable with the toroid sizes. Vertical shear of ambient winds, when present, led to a tilting of the updrafts and toroids. Patterns in the reflectivity and velocity fields indicated regions of major intrusions into the thermals, accompanied by entrainment of ambient air, or recycling of larger hydrometeors, depending on their location. In addition, at the upper cloud/environment interface, instability nodes contributed to further entrapment of cloud-free air. The observations presented in this paper constitute clear demonstrations and quantitative characterization of vortical circulations in growing cumulus turrets; they should provide a more reliable basis for the assessment of simulations and of model parameterizations.

Corresponding author address: Rick Damiani, 1000 E. University Ave., University of Wyoming, Laramie, WY 82071. Email: rickdami@uwyo.edu

Save