• Balsley, B. B., , R. G. Frehlich, , M. L. Jensen, , Y. Meillier, , and A. Muschinski, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution and potential causes. J. Atmos. Sci, 60 , 24962508.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., , and M. K. Macvean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor, 112 , 257281.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., , R. Banta, , S. P. Burns, , D. C. Fritts, , R. Newsom, , G. S. Poulos, , and J. Sun, 2001: Turbulence statistics of a Kelvin-Helmholtz billow event observed in the night-time boundary layer during the cooperative atmosphere-surface exchange study field program. Dyn. Atmos. Oceans, 34 , 189204.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., , and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci, 35 , 10411052.

    • Search Google Scholar
    • Export Citation
  • Burns, S. P., , and J. Sun, 2000: Thermocouple temperature measurements from the CASES-99 main tower. Preprints, 14th Symp. on Boundary Layers and Turbulence, Aspen, CO, Amer. Meteor. Soc., 358–361.

  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 67–100.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., , J. C. Wyngaard, , and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci, 36 , 10411052.

    • Search Google Scholar
    • Export Citation
  • Chimonas, H., 1999: Steps, waves and turbulence in the stably stratified planetary boundary layer. Bound.-Layer Meteor, 90 , 397421.

  • Coulter, R. L., 1990: A case study of turbulence in the stable nocturnal boundary layer. Bound.-Layer Meteor, 52 , 7592.

  • Cuxart, J., and Coauthors, 2000: Stable atmospheric boundary layer experiment in Spain (SABLES, 98): A report. Bound.-Layer Meteor, 96 , 337370.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1990: Nieuwstadt's stable boundary layer revisited. Quart. J. Roy. Meteor. Soc, 116 , 127158.

  • Derbyshire, S. H., , and N. Wood, 1994: The sensitivity of stable boundary layers to small slopes and other influences. Stably Stratified Flows: Flow and Dispersion over Topography, Oxford University Press, 358 pp.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1999: Turbulence, radiation and fog in Dutch stable boundary layers. Bound.-Layer Meteor, 90 , 447477.

  • Finnigan, J. J., , and F. Enaudi, 1981: Interaction between an internal gravity wave and the PBL. Quart. J. Roy. Meteor. Soc, 107 , 807832.

    • Search Google Scholar
    • Export Citation
  • Garrat, J. R., , and R. A. Brost, 1981: Radiative cooling within and above the nocturnal boundary layer. J. Atmos. Sci, 38 , 27302746.

  • Ha, K-J., , and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A , 317327.

  • Hunt, J. C. R., , J. C. Kaimal, , and J. E. Gaynor, 1985: Some observations of turbulence structure in the stable layers. Quart. J. Roy. Meteor. Soc, 111 , 793815.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., , D. D. Strech, , and R. E. Britter, 1988: Length scales in stably stratified turbulent flows and their use in turbulent models. Stably Stratified Flows and Dense Gas Dispersion, J. S. Puttok, Ed., Oxford University Press, 285–321.

    • Search Google Scholar
    • Export Citation
  • King, J. C., , S. D. Mobbs, , M. S. Darby, , and J. M. Reeds, 1987: Observation of an internal gravity wave in the lower troposphere at Halley, Antarctica. Bound.-Layer Meteor, 39 , 114.

    • Search Google Scholar
    • Export Citation
  • Mahli, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor, 74 , 389396.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1979: Penetrative convection at the top of a growing boundary layer. Quart. J. Roy. Meteor. Soc, 105 , 469485.

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. J. Theor. Comp. Fluid. Dyn, 11 , 263280.

  • Mahrt, L., 2003: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor, 105 , 351363.

  • Mahrt, L., , and D. Vickers, 2003: Formulation of turbulent fluxes in the stable boundary layer. J. Atmos. Sci, 60 , 25382548.

  • Mahrt, L., , and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer. Meteor, doi:10.1007/s10546-005-9017-5.

  • Mahrt, L., , J. Sun, , W. Blumen, , T. Delany, , and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor, 88 , 255278.

  • Mahrt, L., , X. Lee, , A. Black, , H. Neumann, , and R. M. Staebler, 2000: Vertical mixing in a partially open canopy. Agric. For. Meteor, 101 , 6778.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., , and S. H. Derbyshire, 1990: Large-eddy simulation of the stably stratified atmospheric boundary layer. Bound.-Layer Meteor, 53 , 117162.

    • Search Google Scholar
    • Export Citation
  • Merrill, J., 1977: Observational and theoretical study of shear instability in the airflow near the ground. J. Atmos. Sci, 34 , 911921.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech, 10 , 496508.

  • Monin, A. S., , and A. M. Obukhov, 1954: Basic laws of turbulence mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24 , 151. 163187.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdown of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor, 54 , 987.

  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci, 41 , 22022216.

  • Oyha, Y. D., , E. Neff, , and E. N. Meroney, 1997: Turbulence structure in a stratified boundary layer under stable conditions. Bound.-Layer Meteor, 83 , 139161.

    • Search Google Scholar
    • Export Citation
  • Pahlow, M., , M. B. Parlange, , and F. Porte-Agel, 2001: On Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor, 99 , 225248.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., , and S. Burns, 2003: An evaluation of bulk Ri-based surface layer formulation for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci, 60 , 25232537.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc, 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, 130 pp.

  • Rees, J. M., , and S. D. Mobbs, 1988: Studies of internal gravity waves troposphere at Halley, Antarctica. Quart. J. Roy. Meteor. Soc, 114 , 939966.

    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., , C. H. Moeng, , and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor, 95 , 130.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., , and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor, 34 , 3348.

  • Shutts, G. J., , M. Kitchen, , and P. H. Hoare, 1988: A large amplitude gravity wave in the lower atmosphere detected by radiosonde. Quart. J. Roy. Meteor. Soc, 114 , 579594.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1986a: On similarity in the atmospheric boundary layer. Bound.-Layer Meteor, 34 , 377397.

  • Sorbjan, Z., 1986b: On the vertical distribution of passive species in the atmospheric boundary layer. Bound.-Layer Meteor, 35 , 7381.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1986c: Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Bound.-Layer Meteor, 35 , 257275.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1987: Comments on “Scaling the atmospheric boundary layer.”. Bound.-Layer Meteor, 38 , 411413.

  • Sorbjan, Z., 1995: Self-similar structure of the planetary boundary layer. The Planetary Boundary Layer and Its Parameterization, 1995 Summer Colloquium, C.-H. Moeng, Ed., NCAR, 153–175.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2001: An evaluation of local similarity at the top of the mixed layer based on large-eddy simulations. Bound.-Layer Meteor, 101 , 183207.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2004: Large-eddy simulations of the baroclinic mixed layer. Bound.-Layer Meteor, 112 , 5780.

  • Sorbjan, Z., 2006: Comments on “Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer.”. Quart. J. Roy. Meteor. Soc, in press.

    • Search Google Scholar
    • Export Citation
  • Steward, R. W., 1969: Turbulence and waves in a stratified atmosphere. Radio Sci, 4 , 12691278.

  • Sun, J., , S. Burns, , A. C. Delany, , T. Oncley, , A. Horst, , and D. Lenschow, 2003: Heat balance in nocturnal boundary layer during CASES-99. J. Appl. Meteor, 42 , 16491666.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor, 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Tavoularis, S., , and U. Karnik, 1989: Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech, 204 , 457478.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Liquids. Cambridge University Press, 367 pp.

  • Van de Wiel, B. J. H., , A. Moene, , G. Hartogenesis, , H. A. De Bruin, , and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci, 60 , 25092522.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol, 14 , 512526.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and L. Mahrt, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor, doi:10.1007/s10546-005-9003-y.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., 1975: The critical Richardson number and the ratio of the eddy transport coefficients obtained from a turbulence closure model. J. Atmos. Sci, 32 , 926933.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1969: On Richardson number as a criterion for laminar-turbulent transition in the ocean and atmosphere. Radio Sci, 4 , 12891298.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., , and B. Kosovic, 1994: Similarity of structure-function parameters in the stably stratified boundary layer. Bound.-Layer Meteor, 71 , 277296.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 1
PDF Downloads 25 25 2

Local Structure of Turbulence in Stably Stratified Boundary Layers

View More View Less
  • 1 Department of Physics, Marquette University, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

The “flux based” local scaling in the stably stratified boundary layer is valid only in cases with strong, continuous turbulence, when the gradient Richardson number Ri is constant and subcritical. To extend the local similarity approach to cases with weak turbulence (very stable regime), the “gradient based” local scaling is introduced and discussed in the paper. Both types of local scaling, the flux based and the gradient based, are tested based on the data, collected from a 60-m tower during the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99). The obtained results show that the gradient-based scaling provides a useful framework for the treatment of cases with both strong and weak turbulence and overcritical Richardson numbers.

Corresponding author address: Zbigniew Sorbjan, Dept. of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53201-1881. Email: sorbjanz@mu.edu

Abstract

The “flux based” local scaling in the stably stratified boundary layer is valid only in cases with strong, continuous turbulence, when the gradient Richardson number Ri is constant and subcritical. To extend the local similarity approach to cases with weak turbulence (very stable regime), the “gradient based” local scaling is introduced and discussed in the paper. Both types of local scaling, the flux based and the gradient based, are tested based on the data, collected from a 60-m tower during the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99). The obtained results show that the gradient-based scaling provides a useful framework for the treatment of cases with both strong and weak turbulence and overcritical Richardson numbers.

Corresponding author address: Zbigniew Sorbjan, Dept. of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53201-1881. Email: sorbjanz@mu.edu

Save