• Baer, F., 1977: Adjustments of initial conditions required to suppress gravity oscillations in nonlinear flows. Contrib. Atmos. Phys, 50 , 350366.

    • Search Google Scholar
    • Export Citation
  • Ballish, B., 1981: A simple test of the initialization of gravity modes. Mon. Wea. Rev, 109 , 13181321.

  • Bengtsson, L., 1975: Four-dimensional assimilation of meteorological observations. WMO/ICSU Joint Organizing Committee, GARP Publication Series 15, 76 pp.

  • Bijlsma, S. J., , and L. M. Hafkenscheid, 1986: Initialization of a limited area model: A comparison between the nonlinear normal mode and bounded derivative methods. Mon. Wea. Rev, 114 , 14451455.

    • Search Google Scholar
    • Export Citation
  • Bourchtein, A., 2002: Ellipticity of normal mode initialization equations. Appl. Math. Comput, 133 , 193211.

  • Bourke, W., , and T. McGregor, 1983: A nonlinear vertical mode initialization scheme for a limited area prediction model. Mon. Wea. Rev, 111 , 22852297.

    • Search Google Scholar
    • Export Citation
  • Briere, S., 1982: Nonlinear normal mode initialization of a limited area model. Mon. Wea. Rev, 110 , 11661186.

  • Browning, G. L., , and H-O. Kreiss, 2002: Multiscale bounded derivative initialization for an arbitrary domain. J. Atmos. Sci, 59 , 16801696.

    • Search Google Scholar
    • Export Citation
  • Browning, G. L., , A. Kasahara, , and H-O. Kreiss, 1980: Initialization of the primitive equations by the bounded derivative method. J. Atmos. Sci, 37 , 14241436.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7 , 2226.

  • Daley, R., 1978: Variational nonlinear normal mode initialization. Tellus, 30 , 201218.

  • Daley, R., 1981: Normal mode initialization. Rev. Geophys. Space Phys, 19 , 450468.

  • DeMaria, M., , and W. H. Schubert, 1985: Axisymmetric, primitive equation, spectral tropical cyclone model. Part II: Normal mode initialization. J. Atmos. Sci, 42 , 12251236.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1983: Convergence properties of Machenhauer's initialization scheme. Mon. Wea. Rev, 111 , 22142223.

  • Errico, R. M., 1991: Theory and application of nonlinear normal mode initialization. Tech. Rep. NCAR/TN-344+IA, Boulder, CO, 137 pp.

  • Fillion, L., 1991: Variational implicit normal mode initialization on the sphere. Mon. Wea. Rev, 119 , 631652.

  • Fillion, L., , and C. Temperton, 1989: Variational implicit normal mode initialization. Mon. Wea. Rev, 117 , 22192229.

  • Fillion, L., , and M. Roch, 1992: Variational implicit normal mode initialization for a multilevel model. Mon. Wea. Rev, 120 , 10511076.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., , H. L. Mitchell, , H. Ritchie, , and A. Staniforth, 1995: The impact of a digital filter initialization technique in a global data assimilation system. Tellus, 47A , 304323.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. A. J., 1988: Computational Techniques for Fluid Dynamics. Vol. 2, Springer-Verlag, 349 pp.

  • Gordin, V., 2000: Mathematical Problems and Methods in Hydrodynamic Weather Forecasting. Taylor and Francis, 844 pp.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Juvanon du Vachat, R., 1986: A general formulation of normal modes for limited-area models: Applications to initialization. Mon. Wea. Rev, 114 , 24782487.

    • Search Google Scholar
    • Export Citation
  • Juvanon du Vachat, R., 1988: Non-normal mode initialization: Formulation and application to the inclusion of the beta terms in the linearization. Mon. Wea. Rev, 116 , 20132024.

    • Search Google Scholar
    • Export Citation
  • Kadychnikov, V., , V. Losev, , and A. Bourchtein, 1987: A nonlinear normal mode initialization and its influence on regional forecasts. Russ. Meteor. Hydrol, 12 , 1624.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1982a: Nonlinear normal mode initialization and the bounded derivative method. Rev. Geophys. Space Phys, 20 , 385397.

  • Kasahara, A., 1982b: Significance of non-elliptic regions in balanced flows of the tropical atmosphere. Mon. Wea. Rev, 110 , 19561967.

    • Search Google Scholar
    • Export Citation
  • Kitade, T., 1983: Nonlinear normal mode initialization with physics. Mon. Wea. Rev, 111 , 21942213.

  • Knox, J. A., 1997: Generalized nonlinear balance criteria and inertial stability. J. Atmos. Sci, 54 , 967985.

  • Lynch, P., , and X-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev, 120 , 10191034.

  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model, with applications to normal mode initialization. Contrib. Atmos. Phys, 50 , 253271.

    • Search Google Scholar
    • Export Citation
  • McGregor, T., , and W. Bourke, 1988: A comparison of vertical mode and normal mode initialization. Mon. Wea. Rev, 116 , 13201334.

  • Nirenberg, L., 1977: Lectures on Non-Linear Functional Analysis. MIR, 317 pp.

  • Paegle, J., , J. N. Paegle, , and G. C. Dodd, 1983: On the occurrence of atmospheric states that are non-elliptic for the balance equations. Mon. Wea. Rev, 111 , 17091723.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , J. N. Thepaut, , and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc, 124B , 18611888.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., 1985: Developments in normal mode initialization. Part II: A new method and its comparison with currently used schemes. Mon. Wea. Rev, 113 , 17531770.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., , and I. M. Navon, 1986: A comparison of the bounded derivative and the normal-mode initialization methods using real data. Mon. Wea. Rev, 114 , 21062121.

    • Search Google Scholar
    • Export Citation
  • Temperton, C., 1988: Implicit normal mode initialization. Mon. Wea. Rev, 116 , 10131031.

  • Temperton, C., 1989: Implicit normal mode initialization for spectral models. Mon. Wea. Rev, 117 , 432447.

  • Temperton, C., , and D. Williamson, 1981: Normal mode initialization for a multilevel grid-point model. Part II: Nonlinear aspects. Mon. Wea. Rev, 109 , 744757.

    • Search Google Scholar
    • Export Citation
  • Temperton, C., , and M. Roch, 1991: Implicit normal mode initialization for an operational regional model. Mon. Wea. Rev, 119 , 667677.

  • Tribbia, J. J., 1981: Nonlinear normal mode balancing and the ellipticity condition. Mon. Wea. Rev, 109 , 17511761.

  • Williamson, D. L., 1979: Difference approximation for numerical weather prediction over a sphere. WMO/ICSU Joint Organizing Committee, GARP Publication Series 17, Vol. 2, WMO-ICSU, 51–123.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 0
PDF Downloads 3 3 2

Ellipticity Conditions of the Shallow Water Balance Equations for Atmospheric Data

View More View Less
  • 1 Institute of Physics and Mathematics, Pelotas State University, Pelotas, Brazil
© Get Permissions
Restricted access

Abstract

Nonlinear normal mode initialization equations, which provide required balance relations for atmospheric data, are considered in the generalized case of shallow water equations in arbitrary orthogonal coordinates. Using the concept of ellipticity in the sense of Douglis–Nirenberg, the conditions of well posedness of boundary value problems for balance equations are derived in the cases of constrained streamfunction, constrained potential vorticity, and constrained pressure fields.

Corresponding author address: Andrei Bourchtein, Rua Anchieta 4715 bloco K, ap.304, 96020-250 Pelotas, Brazil. Email: burstein@terra.com.br

Abstract

Nonlinear normal mode initialization equations, which provide required balance relations for atmospheric data, are considered in the generalized case of shallow water equations in arbitrary orthogonal coordinates. Using the concept of ellipticity in the sense of Douglis–Nirenberg, the conditions of well posedness of boundary value problems for balance equations are derived in the cases of constrained streamfunction, constrained potential vorticity, and constrained pressure fields.

Corresponding author address: Andrei Bourchtein, Rua Anchieta 4715 bloco K, ap.304, 96020-250 Pelotas, Brazil. Email: burstein@terra.com.br

Save