• Edmon, H. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci, 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., , and W. F. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev, 110 , 625644.

  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc, 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , R. Neale, , M. Rodwell, , and G-Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus, 51 , 3344.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., , and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean winds in the tropical upper troposphere. J. Atmos. Sci, 62 , 371389.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci, 50 , 12111227.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., , and I. M. Held, 2004: Abrupt transition to strong superrotation in an axisymmetric model of the upper troposphere. J. Atmos. Sci, 61 , 29282935.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci, 49 , 15411554.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., , and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys, 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci, 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1988: The dynamical range of global circulations—I. Climate Dyn, 2 , 205260.

  • Williams, G. P., 2003a: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci, 60 , 12701296.

  • Williams, G. P., 2003b: Jet sets. J. Meteor. Soc. Japan, 81 , 439476.

  • Williams, G. P., 2003c: Barotropic instability and equatorial superrotation. J. Atmos. Sci, 60 , 21362152.

  • Williams, G. P., , and J. L. Holloway, 1982: The range and unity of planetary circulations. Nature, 297 , 295299.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 4
PDF Downloads 17 17 4

Equatorial Superrotation and Barotropic Instability: Static Stability Variants

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Altering the tropospheric static stability changes the nature of the equatorial superrotation associated with unstable, low-latitude, westerly jets, according to calculations with a dry, global, multilevel, spectral, primitive equation model subject to a simple Newtonian heating function. For a low static stability, the superrotation fluxes with the simplest structure occur when the stratospheric extent and horizontal diffusion are minimal. Barotropic instability occurs on the jet's equatorward flank and baroclinic instability occurs on the jet's poleward flank. Systems with a high static stability inhibit the baroclinic instability and thereby reveal more clearly that the barotropic instability is the primary process driving the equatorial superrotation. Such systems produce a flatter equatorial jet and also take much longer to equilibrate than the standard atmospheric circulation.

Corresponding author address: Dr. G. P. Williams, NOAA/GFDL, Princeton University, P.O. Box 308, Princeton, NJ 08542-0308. Email: Gareth.Williams@noaa.gov

Abstract

Altering the tropospheric static stability changes the nature of the equatorial superrotation associated with unstable, low-latitude, westerly jets, according to calculations with a dry, global, multilevel, spectral, primitive equation model subject to a simple Newtonian heating function. For a low static stability, the superrotation fluxes with the simplest structure occur when the stratospheric extent and horizontal diffusion are minimal. Barotropic instability occurs on the jet's equatorward flank and baroclinic instability occurs on the jet's poleward flank. Systems with a high static stability inhibit the baroclinic instability and thereby reveal more clearly that the barotropic instability is the primary process driving the equatorial superrotation. Such systems produce a flatter equatorial jet and also take much longer to equilibrate than the standard atmospheric circulation.

Corresponding author address: Dr. G. P. Williams, NOAA/GFDL, Princeton University, P.O. Box 308, Princeton, NJ 08542-0308. Email: Gareth.Williams@noaa.gov

Save