Conditional Nonlinear Optimal Perturbations of a Two-Dimensional Quasigeostrophic Model

Mu Mu LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Mu Mu in
Current site
Google Scholar
PubMed
Close
and
Zhiyue Zhang LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, China

Search for other papers by Zhiyue Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Conditional nonlinear optimal perturbations (CNOPs) of a two-dimensional quasigeostrophic model are obtained numerically. The CNOP is the initial perturbation whose nonlinear evolution attains the maximum value of the cost function, which is constructed according to the physical problems of interests with physical constraint conditions. The difference between the CNOP and a linear singular vector is compared. The results demonstrate that CNOPs catch the nonlinear effects of the model on the evolutions of the initial perturbations. These results suggest that CNOPs are applicable to the study of predictability and sensitivity analysis when nonlinearity is of importance.

Corresponding author address: Dr. Mu Mu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: mumu@lasg.iap.ac.cn

Abstract

Conditional nonlinear optimal perturbations (CNOPs) of a two-dimensional quasigeostrophic model are obtained numerically. The CNOP is the initial perturbation whose nonlinear evolution attains the maximum value of the cost function, which is constructed according to the physical problems of interests with physical constraint conditions. The difference between the CNOP and a linear singular vector is compared. The results demonstrate that CNOPs catch the nonlinear effects of the model on the evolutions of the initial perturbations. These results suggest that CNOPs are applicable to the study of predictability and sensitivity analysis when nonlinearity is of importance.

Corresponding author address: Dr. Mu Mu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: mumu@lasg.iap.ac.cn

Save
  • Arakawa, A., 1966: Computation design for long-term numerical integrations for the equations of atmospheric motions. J. Comput. Phys, 1 , 119143.

    • Search Google Scholar
    • Export Citation
  • Aurell, E., G. Boffetta, A. Crisanti, G. Paladin, and A. Bulpiani, 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. A: Math. Gen, 30 , 126.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., 1996: Constructing fast-growing perturbations for the nonlinear regime. J. Atmos. Sci, 53 , 28382851.

  • Boffetta, G., P. Giuliani, G. Paladin, and A. Vulpiani, 1998: An extension of the Lyapunov analysis for the predictability problem. J. Atmos. Sci, 55 , 34093416.

    • Search Google Scholar
    • Export Citation
  • Boggs, P. T., and J. W. Tolle, 1995: Sequential quadratic programming. Acta. Numer, 1995 , 152.

  • Boggs, P. T., and J. W. Tolle, 2000: Sequential quadratic programming for large-scale nonlinear optimization. J. Comput. Appl. Math, 124 , 123137.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. Palmer, 1995: The singular vector structure of the atmospheric global circulation. J. Atmos. Sci, 52 , 14341456.

  • Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for ENSO events. J. Geophys. Res, 109 .D23105, doi:10.1029/2004JD004756.

    • Search Google Scholar
    • Export Citation
  • Durbiano, S., 2001: Vecteurs characristiques de modeles oceaniques pour la reduction dordre er assimilation de donnees. Ph.D. thesis, Universite Joseph Fourier-Grenoble, Grenoble, France, 214 pp.

  • Ehrendorfer, M., 2000: The total energy norm in a quasigeostrophic model. J. Atmos. Sci, 57 , 34433451.

  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci, 46 , 11931206.

  • Farrell, B. F., 1990: Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci, 47 , 24092416.

  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr, 22 , 338349.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Transient development of perturbations in stratified shear flow. J. Atmos. Sci, 50 , 22012214.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1997: Adjoint sensitivity and finite-time normal mode disturbances during block. J. Atmos. Sci, 54 , 11441165.

  • Frederiksen, J. S., 2000: Singular vectors, finite-time normal modes and error growth during blocking. J. Atmos. Sci, 57 , 312333.

  • Kleeman, R., Y. Tang, and A. M. Moore, 2003: The calculation of climatically relevant singular vector in the presence of weather noise as applied to the ENSO problem. J. Atmos. Sci, 60 , 28562868.

    • Search Google Scholar
    • Export Citation
  • Lacarra, J., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A , 8195.

  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmosphere model. Tellus, 17 , 321333.

  • Lorenz, E. N., 1996: Predictability—A problem partly solved. Proc. ECMWF Seminar on Predictability, ECMWF, Reading, United Kingdom, 1–18.

  • Mu, M., 2000: Nonlinear singular vectors and nonlinear singular values. Sci. China(D), 43 , 375385.

  • Mu, M., and Q. C. Zeng, 1991: New development on existence and uniqueness of solutions to some models in atmospheric dynamics. Adv. Atmos. Sci, 8 , 383398.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and T. G. Shepherd, 1994: Nonlinear stability of multilayer quasi-geostrophic flow. Geophys. Astrophys. Fluid Dyn, 75 , 2137.

  • Mu, M., and J. C. Wang, 2001: Nonlinear fastest growing perturbation and the first kind of predictability. Sci. China(D), 44 , 11281139.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Sci. Bull, 48 , 10451047.

    • Search Google Scholar
    • Export Citation
  • Mu, M., H. Guo, J. F. Wang, and Y. Li, 2000: The impact of nonlinear stability and instability on the validity of the tangent linear model. Adv. Atmos. Sci, 17 , 375390.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys, 10 , 493501.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijikstra, 2004: The sensitivity and stability of the ocean's thermohaline circulation to finite amplitude perturbations. J. Phys. Oceanogr, 34 , 23052315.

    • Search Google Scholar
    • Export Citation
  • Oortwin, J., and J. Barkmeijer, 1995: Perturbations that optimally trigger weather regimes. J. Atmos. Sci, 52 , 39323944.

  • Samelson, R. M., and E. Tziperman, 2001: Instability of the chaotic ENSO: The growth-phase predictability barrier. J. Atmos. Sci, 58 , 36133625.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Mu, D-J. Sun, and X-Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res, 110 .C07025, doi:10.1029/2005JC002897.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., P. Bartello, and P. Gauthier, 1995: Four-dimensional data assimilation with a wide range of scales. Tellus, 47A , 974997.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., 1998: Initial conditions for optimal growth in couple ocean–atmosphere model of ENSO. J. Atmos. Sci, 55 , 537557.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev, 125 , 32973319.

  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr, 32 , 34273435.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, and S. E. Zebiak, 1997a: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev, 125 , 20432056.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and T. N. Palmer, 1997b: Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon. Wea. Rev, 125 , 20572073.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 630 448 116
PDF Downloads 230 75 11