Fluctuations in an Equilibrium Convective Ensemble. Part I: Theoretical Formulation

George C. Craig DLR Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Search for other papers by George C. Craig in
Current site
Google Scholar
PubMed
Close
and
Brenda G. Cohen Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Brenda G. Cohen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To provide a theoretical basis for stochastic parameterization of cumulus convection, the equilibrium fluctuations of a field of cumulus clouds under homogeneous large-scale forcing are derived statistically, using the Gibbs canonical ensemble from statistical mechanics. In the limit of noninteracting convective cells, the statistics of these convective fluctuations can be written in terms of the large-scale, externally constrained properties of the system. Using this framework, the probability density function of individual cloud mass fluxes is shown to be exponential. An analytical expression for the distribution function of total mass flux over a region of given size is also derived, and the variance of this distribution is found to be inversely related to the mean number of clouds in the ensemble. In a companion paper, these theoretical predictions are tested against cloud resolving model data.

Corresponding author address: George C. Craig, DLR Oberpfaffenhofen, Institut für Physik der Atmosphäre, Münchner Strasse 20, D-82234 Wessling, Germany. Email: george.craig@dlr.de

Abstract

To provide a theoretical basis for stochastic parameterization of cumulus convection, the equilibrium fluctuations of a field of cumulus clouds under homogeneous large-scale forcing are derived statistically, using the Gibbs canonical ensemble from statistical mechanics. In the limit of noninteracting convective cells, the statistics of these convective fluctuations can be written in terms of the large-scale, externally constrained properties of the system. Using this framework, the probability density function of individual cloud mass fluxes is shown to be exponential. An analytical expression for the distribution function of total mass flux over a region of given size is also derived, and the variance of this distribution is found to be inversely related to the mean number of clouds in the ensemble. In a companion paper, these theoretical predictions are tested against cloud resolving model data.

Corresponding author address: George C. Craig, DLR Oberpfaffenhofen, Institut für Physik der Atmosphäre, Münchner Strasse 20, D-82234 Wessling, Germany. Email: george.craig@dlr.de

Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Astin, I., and B. G. Latter, 1998: A case for exponential cloud fields? J. Appl. Meteor., 37 , 13751382.

  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through a dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64 , 325330.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1988: A theory for nonprecipitating convection between two parallel plates. Part II: Nonlinear theory and cloud field organization. J. Atmos. Sci., 45 , 23912415.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117 , 261272.

  • Chandler, D., 1987: Introduction to Modern Statistical Mechanics. Oxford University Press, 274 pp.

  • Cho, H-R., 1978: Some statistical properties of a homogeneous and stationary shallow cumulus cloud field. J. Atmos. Sci., 35 , 125138.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., 2001: Fluctuations in an ensemble of cumulus clouds. Ph.D. thesis, University of Reading, 165 pp.

  • Cohen, B. G., and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130 , 933944.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2006: Fluctuations in an equilibrium convective ensemble. Part II: Numerical experiments. J. Atmos. Sci., 63 , 20052015.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Eagleson, P. S., 1978: Climate, soil, and vegetation. 2. The distribution of annual precipitation derived from observed storm sequences. Water Resour. Res., 14 , 713721.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. weather research program. Bull. Amer. Meteor. Soc., 79 , 285299.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 1997: The mass flux approach to the parameterization of deep convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series, Vol. 505, Elsevier, 297–319.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and M. J. Miller, 1989: A numerical study of the parameterization of deep tropical convection. Quart. J. Roy. Meteor. Soc., 115 , 12091241.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and E. C. Waymire, 1979: A stochastic kinematic study of subsynoptic space-time rainfall. Water Resour. Res., 15 , 637644.

    • Search Google Scholar
    • Export Citation
  • Hozumi, K., T. Harimaya, and C. Magono, 1982: The size distribution of cumulus clouds as a function of cloud amount. J. Meteor. Soc. Japan, 60 , 691699.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. Lemone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Kavvas, M. L., and J. W. Delleur, 1981: A stochastic cluster model of daily rainfall sequences. Water Resour. Res., 17 , 11511160.

  • Landau, L. D., and E. M. Lifshitz, 1968: Statistical Physics. Vol. 5. Course of Theoretical Physics, Pergamon Press, 512 pp.

  • Lesieur, M., 1997: Turbulence in Fluids. Kluwer Academic, 548 pp.

  • Lin, J. W., and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27 , 36913694.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., 1978: Internal structure and development processes of C-scale aggregates of cumulus clouds. Mon. Wea. Rev., 106 , 14881494.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., D. O. Blanchard, D. Rosenfeld, W. L. Hiscox, and M. J. Casey, 1984: Population characteristics, development processes and structure of radar echoes in south Florida. Mon. Wea. Rev., 112 , 5675.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., R. C. Weger, K. S. Kuo, and R. M. Welch, 1998: Clustering, randomness, and regularity in cloud fields. 5. The nature of regular cumulus cloud fields. J. Geophys. Res., 103 , 1136311380.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49 , 744756.

  • Palmer, T., 2001: A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic-dynamic parameterisation in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Plank, V. G., 1969: The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8 , 4667.

  • Ramirez, J. A., R. L. Bras, and K. A. Emanuel, 1990: Stabilization functions of unforced cumulus clouds: Their nature and components. J. Geophys. Res., 95 , 20472059.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and G. J. Huffman, 1980: A stochastic model of cumulus clumping. J. Atmos. Sci., 37 , 20682078.

  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53 , 32653275.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., D. R. Cox, and V. Isham, 1987: Some models for rainfall based on stochastic point processes. Proc. Roy. Soc. London, 410A , 269288.

    • Search Google Scholar
    • Export Citation
  • Sengupta, S. K., R. M. Welch, M. S. Navar, T. A. Berendes, and D. W. Chen, 1990: Cumulus cloud field morphology and spatial patterns derived from high spatial resolution Landsat imagery. J. Appl. Meteor., 29 , 12451267.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D., and A. Ahorony, 1992: Introduction to Percolation Theory. Taylor and Francis, 190 pp.

  • Taylor, H. M., and S. Karlin, 1994: An Introduction to Stochastic Modelling. Academic Press, 631 pp.

  • Tiedke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58 , 16301645.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen, 2005: Statistical analysis of satellite cloud object data from CERES. Part I: Methodology and preliminary results of the 1998 El Niño/2000 La Niña. J. Climate, 18 , 24972514.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbenson, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 643 182 16
PDF Downloads 468 85 13