Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach

Sukanta Basu St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Sukanta Basu in
Current site
Google Scholar
PubMed
Close
and
Fernando Porté-Agel St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Fernando Porté-Agel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new tuning-free subgrid-scale model, termed locally averaged scale-dependent dynamic (LASDD) model, is developed and implemented in large-eddy simulations (LES) of stable boundary layers. The new model dynamically computes the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. Overall, the agreement between the statistics of the LES-generated turbulence and some well-established empirical formulations and theoretical predictions (e.g., the local scaling hypothesis) is remarkable. Moreover, the simulated statistics obtained with the LASDD model show relatively little resolution dependence for the range of grid sizes considered here. In essence, it is shown here that the new LASDD model is a robust subgrid-scale parameterization for reliable, tuning-free simulations of stable boundary layers, even with relatively coarse resolutions.

* Current affiliation: Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Corresponding author address: Sukanta Basu, Atmospheric Science Group, Dept. of Geosciences, Texas Tech University, Lubbock, TX 79409. Email: sukanta.basu@ttu.edu

Abstract

A new tuning-free subgrid-scale model, termed locally averaged scale-dependent dynamic (LASDD) model, is developed and implemented in large-eddy simulations (LES) of stable boundary layers. The new model dynamically computes the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. Overall, the agreement between the statistics of the LES-generated turbulence and some well-established empirical formulations and theoretical predictions (e.g., the local scaling hypothesis) is remarkable. Moreover, the simulated statistics obtained with the LASDD model show relatively little resolution dependence for the range of grid sizes considered here. In essence, it is shown here that the new LASDD model is a robust subgrid-scale parameterization for reliable, tuning-free simulations of stable boundary layers, even with relatively coarse resolutions.

* Current affiliation: Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Corresponding author address: Sukanta Basu, Atmospheric Science Group, Dept. of Geosciences, Texas Tech University, Lubbock, TX 79409. Email: sukanta.basu@ttu.edu

Save
  • Albertson, J. D., and M. B. Parlange, 1999: Natural integration of scalar fluxes from complex terrain. Adv. Water Res., 23 , 239252.

  • Andrén, A., 1995: The structure of stably stratified atmospheric boundary layers: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 121 , 961985.

    • Search Google Scholar
    • Export Citation
  • Andrén, A., A. R. Brown, J. Graf, P. J. Mason, C-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120 , 14571484.

    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 2001: Introduction to Micrometeorology. Academic Press, 420 pp.

  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., doi:10.1007/s10546-005-9036-2.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and M. K. MacVean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 112 , 257281.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35 , 14271440.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., S. H. Derbyshire, and P. J. Mason, 1994: Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart. J. Roy. Meteor. Soc., 120 , 14851512.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zhang, 1988: Spectral Methods in Fluid Dynamics. Springer Verlag, 557 pp.

  • Canuto, V. M., and Y. Cheng, 1997: Determination of the Smagorinsky-Lilly constant CS. Phys. Fluids, 9 , 13681378.

  • Cederwall, R. T., 2002: Large-eddy simulation of the evolving stable boundary layer over flat terrain. Ph.D. thesis, Stanford University, 231 pp.

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and Rayleigh convection. J. Atmos. Sci., 27 , 12111213.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77 , 59005904.

  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7 , 199226.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116 , 127158.

  • Derbyshire, S. H., 1999: Stable boundary-layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90 , 423446.

  • Germano, M., 1992: Turbulence: The filtering approach. J. Fluid Mech., 238 , 325336.

  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3 , 17601765.

  • Geurts, B. J., 2003: Elements of Direct and Large-Eddy Simulation. Edwards, 329 pp.

  • Ghosal, S., T. S. Lund, P. Moin, and K. Akselvoll, 1995: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech., 286 , 229255.

    • Search Google Scholar
    • Export Citation
  • Heinemann, G., 2004: Local similarity properties of the continuously turbulent stable boundary layer over Greenland. Bound.-Layer Meteor., 112 , 283305.

    • Search Google Scholar
    • Export Citation
  • Higgins, C., M. B. Parlange, and C. Meneveau, 2003: Alignment trends of velocity gradients and subgrid scale fluxes in the turbulent atmospheric boundary layer. Bound.-Layer Meteor., 109 , 5983.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2003: GABLS initiates intercomparison for stable boundary layer case. GEWEX News, No. 13, International GEWEX Project Office, Silver Spring, MD, 7–8.

  • Howell, J. F., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90 , 495520.

  • Hunt, J. C. R., D. D. Stretch, and R. E. Britter, 1988: Length scales in stably stratified turbulent flows and their use in turbulence models. Stably Stratified Flows and Dense Gas Dispersion, J. S. Puttock, Ed., Clarendon Press, 285–321.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., G. J. Shutts, and S. H. Derbyshire, 1996: Stably stratified flows in meteorology. Dyn. Atmos. Oceans, 23 , 6379.

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Kleissl, J., C. Meneveau, and M. B. Parlange, 2003: On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J. Atmos. Sci., 60 , 23722388.

    • Search Google Scholar
    • Export Citation
  • Kleissl, J., M. B. Parlange, and C. Meneveau, 2004: Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. J. Atmos. Sci., 61 , 22962307.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 338 , 151182.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57 , 10521068.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, IBM DP Division, 195–210.

  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A, 4 , 633635.

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11 , 263279.

  • Mahrt, L., and D. Vickers, 2003: Formulation of turbulent fluxes in the stable boundary layer. J. Atmos. Sci., 60 , 25382548.

  • Mason, P., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46 , 14921516.

  • Mason, P., 1994: Large-eddy simulation: A critical review of the technique. Quart. J. Roy. Meteor. Soc., 120 , 126.

  • Mason, P. J., and S. H. Derbyshire, 1990: Large-eddy simulation of the stably-stratified atmospheric boundary layer. Bound.-Layer Meteor., 53 , 117162.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and A. R. Brown, 1999: On subgrid models and filter operations in large-eddy simulations. J. Atmos. Sci., 56 , 21012114.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32 , 132.

  • Meneveau, C., T. S. Lund, and W. H. Cabot, 1996: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319 , 353385.

    • Search Google Scholar
    • Export Citation
  • Métais, O., and M. Lesieur, 1992: Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech., 239 , 157194.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1984: A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41 , 20522062.

  • Moin, P., K. Squires, W. Cabot, and S. Lee, 1991: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A, 3 , 27462757.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1, MIT Press, 769 pp.

  • Nieuwstadt, F. T. M., 1984a: Some aspects of the turbulent stable boundary layer. Bound.-Layer Meteor., 30 , 3155.

  • Nieuwstadt, F. T. M., 1984b: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41 , 22022216.

  • Nieuwstadt, F. T. M., 1985: A model for the stationary, stable boundary layer. Turbulence and Diffusion in Stable Environments, J. C. R. Hunt, Ed., Clarendon Press, 149–179.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., P. J. Mason, C-H. Moeng, and U. Schumann, 1991: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, F. Durst et al., Eds., Springer, 343–367.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., and Y-H. Pao, 1974: Numerical computation of turbulent shear flows. Advances in Geophysics, Vol. 18A, Academic Press, 224–236.

  • Piomelli, U., and J. Liu, 1995: Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids, 7 , 839848.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., 2004: A scale-dependent dynamic model for scalar transport in LES of the atmospheric boundary layer. Bound.-Layer Meteor., 112 , 81105.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulations: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415 , 261284.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., M. B. Parlange, C. Meneveau, and W. E. Eichinger, 2001: A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci., 58 , 26732698.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical Recipes in Fortran. Cambridge University Press, 992 pp.

    • Search Google Scholar
    • Export Citation
  • Sagaut, P., 2001: Large Eddy Simulations for Incompressible Flows. Springer-Verlag, 426 pp.

  • Saiki, E. M., C-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95 , 130.

    • Search Google Scholar
    • Export Citation
  • Sarghini, F., U. Piomelli, and E. Balaras, 1999: Scale-similar models for large-eddy simulations. Phys. Fluids, 11 , 15961607.

  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2 , 279290.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91 , 99164.

  • Sorbjan, Z., 1986: Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Bound.-Layer Meteor., 35 , 257275.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1989: Structure of Atmospheric Boundary Layer. Prentice-Hall, 317 pp.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71 , 247276.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482 , 101139.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • van de Wiel, B., 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Ph.D. thesis, Wageningen University, Netherlands, 129 pp.

  • Wong, V. C., and D. K. Lilly, 1994: A comparison of two dynamic subgrid closure methods for turbulent thermal convection. Phys. Fluids, 6 , 10161023.

    • Search Google Scholar
    • Export Citation
  • Yakhot, V., and S. A. Orszag, 1986: Renormalization group analysis of turbulence. I: Basic theory. J. Sci. Comput., 1 , 351.

  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A, 5 , 31863196.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1018 311 94
PDF Downloads 691 185 16