Impact of Explicit Atmosphere–Ocean Coupling on MJO-Like Coherent Structures in Idealized Aquaplanet Simulations

Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper discusses the impact of the atmosphere–ocean coupling on the large-scale organization of tropical convection simulated by an idealized global model applying the Cloud-Resolving Convection Parameterization (CRCP; superparameterization). Because the organization resembles the Madden–Julian Oscillation (MJO), the results contribute to the debate concerning the role of atmosphere–ocean coupling in tropical intraseasonal oscillations.

The modeling setup is an aquaplanet with globally uniform mean sea surface temperature (SST) of 30°C (tropics everywhere) in radiative–convective quasi equilibrium. The simulations apply an interactive radiation transfer model and a slab ocean model with a fixed oceanic mixed layer depth. Results from several 80- and 100-day-long simulations are discussed, where the only difference between the simulations is the prescribed oceanic mixed layer depth, which varied from 5 to 45 m. A simulation with a very deep oceanic mixed layer is also performed to represent constant-SST conditions. The simulations demonstrate that the interactive SST impedes the development of large-scale organization and has insignificant impact on the dynamics of mature MJO-like systems. The impediment is the result of a negative feedback between the large-scale organization of convection and SST, the convection–SST feedback. In this feedback, SST increases in regions of already suppressed convection and decreases in regions with enhanced convection, thus hindering the large-scale organization. Once developed, however, the MJO-like systems are equally strong in interactive and constant-SST simulations, and compare favorably with the observed MJO.

The above impacts of the atmosphere–ocean coupling contradict the majority of previous studies using traditional general circulation models, where, typically, an enhancement of the intraseasonal signal occurs compared to prescribed-SST simulations. An explanation of this discrepancy is suggested.

Corresponding author address: Wojciech W. Grabowski, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. Email: grabow@ncar.ucar.edu

Abstract

This paper discusses the impact of the atmosphere–ocean coupling on the large-scale organization of tropical convection simulated by an idealized global model applying the Cloud-Resolving Convection Parameterization (CRCP; superparameterization). Because the organization resembles the Madden–Julian Oscillation (MJO), the results contribute to the debate concerning the role of atmosphere–ocean coupling in tropical intraseasonal oscillations.

The modeling setup is an aquaplanet with globally uniform mean sea surface temperature (SST) of 30°C (tropics everywhere) in radiative–convective quasi equilibrium. The simulations apply an interactive radiation transfer model and a slab ocean model with a fixed oceanic mixed layer depth. Results from several 80- and 100-day-long simulations are discussed, where the only difference between the simulations is the prescribed oceanic mixed layer depth, which varied from 5 to 45 m. A simulation with a very deep oceanic mixed layer is also performed to represent constant-SST conditions. The simulations demonstrate that the interactive SST impedes the development of large-scale organization and has insignificant impact on the dynamics of mature MJO-like systems. The impediment is the result of a negative feedback between the large-scale organization of convection and SST, the convection–SST feedback. In this feedback, SST increases in regions of already suppressed convection and decreases in regions with enhanced convection, thus hindering the large-scale organization. Once developed, however, the MJO-like systems are equally strong in interactive and constant-SST simulations, and compare favorably with the observed MJO.

The above impacts of the atmosphere–ocean coupling contradict the majority of previous studies using traditional general circulation models, where, typically, an enhancement of the intraseasonal signal occurs compared to prescribed-SST simulations. An explanation of this discrepancy is suggested.

Corresponding author address: Wojciech W. Grabowski, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. Email: grabow@ncar.ucar.edu

Save
  • Anderson, S. P., R. A. Weller, and R. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the Western Pacific warm pool: Observations and 1D model results. J. Climate, 9 , 30563085.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian Oscillation. J. Atmos. Sci., 62 , 16941721.

  • Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62 , 740759.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46 , 740759.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. S. Bretherton, 1995: Tropical wave instabilities: Convective interaction with dynamics using the Emanuel convective parameterization. J. Atmos. Sci., 52 , 6782.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and H. Lim, 1988: Kelvin wave–CISK: A possible mechanism for the 30–50-day oscillations. J. Atmos. Sci., 45 , 17091720.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and L. Deng, 1998: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55 , 690709.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J. Y. Grandpeix, J. M. Piriou, J. L. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553080.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17 , 12631271.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2000: Cloud microphysics and the tropical climate: Cloud-resolving model perspective. J. Climate, 13 , 23062322.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003a: MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003b: Impact of cloud microphysics on convective–radiative quasi-equilibrium revealed by Cloud-Resolving Convection Parameterization (CRCP). J. Climate, 16 , 34633475.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61 , 19401952.

  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D, 133 , 171178.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2002: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations: Effects of interactive radiation. Quart. J. Roy. Meteor. Soc., 128 , 23492375.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 2002: A multiscale anelastic model for meteorological research. Mon. Wea. Rev., 130 , 939956.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture–convection feedback in the Tropics. Quart. J. Roy. Meteor. Soc., 130 , 30813104.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J-I. Yano, and M. W. Moncrieff, 2000: Cloud-resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57 , 20222039.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50 , 39093927.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden–Julian Oscillation in a general circulation model. J. Atmos. Sci., 57 , 39393952.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian Oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMotte, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99 , 2081520827.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., L. Ping, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud clusters, westerly wind bursts, 30–60 day oscillations and ENSO: A unified view. J. Meteor. Soc. Japan, 67 , 205219.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 Climate Models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave–CISK in tropics. J. Atmos. Sci., 31 , 156179.

  • Madden, R., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Majda, A. J., and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Mapes, B. E., 1998: The large-scale part of tropical mesoscale convective system circulations: A linear vertical spectral band model. J. Meteor. Soc. Japan, 76 , 2955.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54 , 21872200.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and K. A. Emanuel, 1999: Equilibrium atmospheres of a two-column radiative-convective model. Quart. J. Roy. Meteor. Soc., 125 , 22392264.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77 , 907927.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Raymond, D. J., 2000a: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57 , 12861297.

  • Raymond, D. J., 2000b: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126 , 889898.

  • Raymond, D. J., 2001: A new model of the Madden–Julian Oscillation. J. Atmos. Sci., 58 , 28072819.

  • Raymond, D. J., and X. Zeng, 2000: Instability and large-scale circulations in a two-column model of the tropical troposphere. Quart. J. Roy. Meteor. Soc., 126 , 31173135.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., L. G. Margolin, and A. Wyszogrodzki, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58 , 349364.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Innes, and W. K-M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13 , 769795.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001a: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001b: On the relationship between tropical convection and sea surface temperature. J. Climate, 14 , 633637.

  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9 , 19591990.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Woolnough, J. S., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescale. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Woolnough, J. S., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface anomalies. Quart. J. Roy. Meteor. Soc., 127 , 887907.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55 , 26932714.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of cloud microphysics on cloud–radiation interaction. J. Atmos. Sci., 56 , 31773195.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 .RG2003, doi:10.1029/2004RG000158.

  • Zheng, Y., D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17 , 41094134.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 155 56
PDF Downloads 137 41 2