• Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effect of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific Basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Search Google Scholar
    • Export Citation
  • Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172–173.

  • Guiney, J. L., and R. J. Pasch, 1999: Hurricane Mitch: One of the deadliest Atlantic hurricanes in history. Mar. Wea. Log, 43 , 46.

  • Holland, G. J., 1997: The maximum potential of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Houze, R. A., F. D. Marks, and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49 , 943962.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Largescale asymmetries. Quart. J. Roy. Meteor. Soc., 126 , 31373159.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126 , 31613185.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2002a: The impact of landfall on tropical cyclone boundary layer winds. Extended Abstracts, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 335–336.

  • Kepert, J. D., 2002b: Modelling the tropical cyclone boundary layer wind-field at landfall. Extended Abstracts, 14th BMRC Modelling Workshop: Modelling and Predicting Extreme Events, Melbourne, Australia, 81–84.

  • Kepert, J. D., 2002c: The wind-field structure of the tropical cyclone boundary-layer Ph.D. thesis, Monash University, Melbourne, Australia, 350 pp.

  • Kepert, J. D., 2005: Objective analysis of tropical cyclone location and motion from high density observations. Mon. Wea. Rev., 133 , 24062421.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63 , 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., L. A. Avila, and J. L. Guiney, 2001: Atlantic hurricane season of 1998. Mon. Wea. Rev., 129 , 30853123.

  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133 , 36443660.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind fields from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110 , 19121932.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 2002: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 128 , 120.

  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122 , 291304.

  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53 , 33133332.

  • Willoughby, H. E., 1995: Mature structure and evolution. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., WMO Rep. TCP-38, 21–62.

  • Willoughby, H. E., and M. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134 , 11021120.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical winds shear. J. Atmos. Sci., 61 , 18591876.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 157 8
PDF Downloads 266 135 6

Observed Boundary Layer Wind Structure and Balance in the Hurricane Core. Part II: Hurricane Mitch

Jeffrey D. KepertBureau of Meteorology Research Centre, Melbourne, Australia

Search for other papers by Jeffrey D. Kepert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Part I of this paper presented a detailed analysis of the boundary layer of Hurricane Georges (1998), based mainly on the newly available high-resolution GPS dropsonde data. Here, similar techniques and data are used to study Hurricane Mitch (1998). In contrast to Hurricane Georges, the flow in the middle to upper boundary layer near the eyewall is found to be strongly supergradient, with the imbalance being statistically significant. The reason for the difference is shown to be the different radial structure of the storms, in that outside of the radius of maximum winds, the wind decreases much more quickly in Mitch than in Georges. Hurricane Mitch was close to inertially neutral at large radius, with a strong angular momentum gradient near the radius of maximum winds. Kepert and Wang predict strongly supergradient flow in the upper boundary layer near the radius of maximum winds in this situation; the observational analysis is thus in good agreement with their theory. The wind reduction factor (i.e., ratio of a near-surface wind speed to that at some level further aloft) is found to increase inward toward the radius of maximum winds, in accordance with theoretical predictions and the analysis by Franklin et al. Marked asymmetries in the boundary layer wind field and in the eyewall convection are shown to be consistent with asymmetric surface friction due to the storm’s proximity to land, rather than to motion. The boundary layer flow was simulated using Kepert and Wang’s model, forced by the observed storm motion, radial profile of gradient wind, and coastline position; and good agreement with the observations was obtained.

Corresponding author address: Dr. Jeff Kepert, Bureau of Meteorology Research Centre, GPO Box 1289K Melbourne, 700 Collins Street, Docklands, VIC 3001, Australia. Email: j.kepert@bom.gov.au

Abstract

Part I of this paper presented a detailed analysis of the boundary layer of Hurricane Georges (1998), based mainly on the newly available high-resolution GPS dropsonde data. Here, similar techniques and data are used to study Hurricane Mitch (1998). In contrast to Hurricane Georges, the flow in the middle to upper boundary layer near the eyewall is found to be strongly supergradient, with the imbalance being statistically significant. The reason for the difference is shown to be the different radial structure of the storms, in that outside of the radius of maximum winds, the wind decreases much more quickly in Mitch than in Georges. Hurricane Mitch was close to inertially neutral at large radius, with a strong angular momentum gradient near the radius of maximum winds. Kepert and Wang predict strongly supergradient flow in the upper boundary layer near the radius of maximum winds in this situation; the observational analysis is thus in good agreement with their theory. The wind reduction factor (i.e., ratio of a near-surface wind speed to that at some level further aloft) is found to increase inward toward the radius of maximum winds, in accordance with theoretical predictions and the analysis by Franklin et al. Marked asymmetries in the boundary layer wind field and in the eyewall convection are shown to be consistent with asymmetric surface friction due to the storm’s proximity to land, rather than to motion. The boundary layer flow was simulated using Kepert and Wang’s model, forced by the observed storm motion, radial profile of gradient wind, and coastline position; and good agreement with the observations was obtained.

Corresponding author address: Dr. Jeff Kepert, Bureau of Meteorology Research Centre, GPO Box 1289K Melbourne, 700 Collins Street, Docklands, VIC 3001, Australia. Email: j.kepert@bom.gov.au

Save