• Ackerman, S. A., 1997: Remote sensing of aerosols using satellite infrared observations. J. Geophys. Res., 102 , 1706917079.

  • Ackerman, S. A., and Coauthors, 2002: Discriminating clear-sky from cloud with MODIS–Algorithm Theoretical Basis Document (MOD35). ATBD-MOD-06, Version 4.0, NASA Goddard Space Flight Center, 115 pp.

  • Chou, M-D., P-K. Chan, and M. Wang, 2002: Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties. J. Atmos. Sci., 59 , 748757.

    • Search Google Scholar
    • Export Citation
  • D’Almeida, G., P. Koepke, and E. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Gao, B. C., and Y. Kaufman, 1995: Selection of the 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52 , 42314237.

    • Search Google Scholar
    • Export Citation
  • Gao, B. C., Y. J. Kaufman, D. Tanre, and R-R. Li, 2002: Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels. Geophys. Res. Lett., 29 .1890, doi:10.1029/2002GL015475.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and D. Tanre, 1998: Algorithm for remote sensing of tropospheric aerosol from MODIS (MOD04). ATBD-MOD-02, NASA Goddard Space Flight Center, 85 pp.

  • King, M. D., S. C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase (MOD06). ATBD-MOD-05, Version 5, NASA Goddard Space Flight Center, 85 pp.

  • Koepke, P., 1984: Effective reflectance of oceanic whitecaps. Appl. Opt., 23 , 18161824.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2d ed. Academic Press, 583 pp.

  • Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer in ice crystal clouds: Applications to climate research. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press, 417–449.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1995: Influence of cirrus cloud radiative forcing on climate sensitivity in a general circulation model. J. Geophys. Res., 100 , 1630516323.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., B. A. Baum, K. I. Strabala, and R. A. Frey, 2002: Cloud top properties and cloud phase algorithm theoretical basis document. ATBD-MOD-04, Version 6, NASA Goddard Space Flight Center, 62 pp.

  • Meyer, K., P. Yang, and B. C. Gao, 2004: Optical thickness of tropical cirrus clouds derived from the MODIS 0.66 and 1.375 μm channel. IEEE Trans. Geosci. Remote Sens., 42 , 833841.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt., 38 , 73257341.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and B. Gentili, 1993: Diffuse reflectance of oceanic waters. II. Bidirectional aspects. Appl. Opt., 32 , 68646879.

  • Rao, N. X., S. C. Ou, and K. N. Liou, 1995: Removal of the solar component in AVHRR 3.7 μm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteor., 34 , 482499.

    • Search Google Scholar
    • Export Citation
  • Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, and G. M. McFarquhar, 2000: Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: Methodology and sensitivity to physical assumptions. J. Geophys. Res., 105 , 1172111738.

    • Search Google Scholar
    • Export Citation
  • Roskovensky, J. K., and K. N. Liou, 2003: Detection of thin cirrus from 1.38 μm/0.65 μm reflectance ratio combined with 8.6–11 μm brightness temperature difference. Geophys. Res. Lett., 30 .1985, doi:10.1029/2003GL018135.

    • Search Google Scholar
    • Export Citation
  • Roskovensky, J. K., K. N. Liou, T. J. Garrett, and D. Baumgardner, 2004: Simultaneous retrieval of aerosol and thin cirrus optical depths using MODIS airborne simulator data during CRYTAL-FACE and CLAMS. Geophys. Res. Lett., 31 .L18110, doi:10.1029/2004GL020457.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., and R. W. Fenn, 1979: Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties. AFGL-TR-79-0214, Air Force Geophysical Laboratory, Hanscom AFB, MA, 94 pp.

  • Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, and L. Gumley, 1998: Infrared spectral absorption of nearly invisible cirrus clouds. Geophys. Res. Lett., 25 , 11371140.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46 , 319.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989b: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46 , 2036.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., K. N. Liou, and P. Minnis, 1992: The effects of small ice crystals on cirrus infrared radiative properties. J. Atmos. Sci., 49 , 14871493.

    • Search Google Scholar
    • Export Citation
  • Tanre, D., C. Devaux, M. Herman, R. Santer, and J. Y. Gac, 1988: Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths. J. Geophys. Res., 93 , 1422314231.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12 , 170184.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 23 6
PDF Downloads 29 12 3

Simultaneous Determination of Aerosol and Thin Cirrus Optical Depths over Oceans from MODIS Data: Some Case Studies

J. K. RoskovenskyDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. K. Roskovensky in
Current site
Google Scholar
PubMed
Close
and
K. N. LiouDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by K. N. Liou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of separating thin cirrus and aerosols from satellite remote sensing to produce broader and more accurate fields for the determination of respective radiative forcings is highlighted. This has been accomplished through the development of a new methodology for retrieving both thin cirrus and aerosol optical depths simultaneously over oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. This method employs a procedure to quantify and remove the thin cirrus contribution to the observed reflectance through a correlation of visible and 1.38-μm reflectances so that the aerosol signal can be extracted. Aerosol optical depths are then retrieved through comparisons with the simulated reflectances created a priori. Using the aerosol optical depth along with the specific viewing geometry and surface reflectance as pointers to locations in a lookup table of modeled reflectances, cirrus optical depth and an effective ice crystal size can be retrieved. An iterative scheme has been created that uses the retrieved effective cirrus ice crystal size to account for the effect that the particle size distribution has on the correlation of visible and 1.38-μm reflectance. Retrievals of both aerosol and thin cirrus optical depths over the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site of Nauru performed on a limited number of cases have proven to be consistent with values determined from ground measurements. Also, comparisons with the MODIS aerosol retrievals over a broad area of ocean have highlighted the potential usefulness of this procedure in increasing the amount of potential aerosol information recovered and removing the ever-present thin cirrus contamination.

Corresponding author address: Dr. J. K. Roskovensky, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA 90095. Email: jrosko@atmos.ucla.edu

Abstract

The importance of separating thin cirrus and aerosols from satellite remote sensing to produce broader and more accurate fields for the determination of respective radiative forcings is highlighted. This has been accomplished through the development of a new methodology for retrieving both thin cirrus and aerosol optical depths simultaneously over oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. This method employs a procedure to quantify and remove the thin cirrus contribution to the observed reflectance through a correlation of visible and 1.38-μm reflectances so that the aerosol signal can be extracted. Aerosol optical depths are then retrieved through comparisons with the simulated reflectances created a priori. Using the aerosol optical depth along with the specific viewing geometry and surface reflectance as pointers to locations in a lookup table of modeled reflectances, cirrus optical depth and an effective ice crystal size can be retrieved. An iterative scheme has been created that uses the retrieved effective cirrus ice crystal size to account for the effect that the particle size distribution has on the correlation of visible and 1.38-μm reflectance. Retrievals of both aerosol and thin cirrus optical depths over the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site of Nauru performed on a limited number of cases have proven to be consistent with values determined from ground measurements. Also, comparisons with the MODIS aerosol retrievals over a broad area of ocean have highlighted the potential usefulness of this procedure in increasing the amount of potential aerosol information recovered and removing the ever-present thin cirrus contamination.

Corresponding author address: Dr. J. K. Roskovensky, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA 90095. Email: jrosko@atmos.ucla.edu

Save