• Abramowitz, M., and I. Stegun, and Ed., 1972: Handbook of Mathematical Functions. Dover, 1046 pp.

  • Buizza, R. M., J. Miller, and T. N. Palmer, 1999: Stochastic simulation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Burgers, J. M., 1974: The Nonlinear Diffusion Equation. Reidel, 173 pp.

  • Calogero, F., and S. De Lillo, 1989: The Burgers equation on the semi-infinite and finite intervals. Nonlinearity, 2 , 3743.

  • Chu, P., L. M. Ivanov, T. M. Margolina, and O. V. Melnichenko, 2002: On probabilistic stability of an atmospheric model to various amplitude perturbations. J. Atmos. Sci., 59 , 28602873.

    • Search Google Scholar
    • Export Citation
  • Crank, J., 1956: The Mathematics of Diffusion. Clarendon Press, 347 pp.

  • Fife, P., 1979: Mathematical Aspects of Reacting and Diffusing Systems. Springer, 185 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Landau, L. D., and E. M. Lifshitz, 1959: Fluid Mechanics. Pergamon Press, 536 pp.

  • Lorenz, E. N., 1984: Irregularity: A fundamental propery of the atmosphere. Tellus, 36A , 98110.

  • Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics: Part I. McGraw-Hill, 997 pp.

  • Nicolis, C., 2003: Dynamics of model error: Some generic features. J. Atmos. Sci., 60 , 22082218.

  • Nicolis, C., 2004: Dynamics of model error: The role of unresolved scales revisited. J. Atmos. Sci., 61 , 17401753.

  • Nicolis, C., 2005: Can error source terms in forecasting models be represented by Gaussian Markov noises? Quart. J. Roy. Meteor. Soc., 131 , 21512170.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., and G. Nicolis, 1987: Irreversible Phenomena and Dynamical Systems Analysis in Geosciences. Reidel, 578 pp.

  • Nutter, P., D. Stensrud, and M. Xue, 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Wea. Rev., 132 , 23582377.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., and J. Shukla, 1973: On the strategy of combining coarse and fine grid meshes in numerical weather prediction. J. Appl. Meteor., 12 , 763770.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC’s global forecasts. Mon. Wea. Rev., 122 , 12811305.

  • Tribbia, J. J., and D. P. Baumhefner, 1988: The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Mon. Wea. Rev., 116 , 22762288.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78 , 25992617.

    • Search Google Scholar
    • Export Citation
  • Widder, D. V., 1941: The Laplace Transform. Princeton University Press, 406 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 40 3
PDF Downloads 46 23 3

Dynamics of Model Error: The Role of the Boundary Conditions

View More View Less
  • 1 Institut Royal Météorologique de Belgique, Brussels, Belgium
Restricted access

Abstract

The different modes of the early stages of the response of a forecasting model to a small error in the boundary conditions are analyzed. A general formulation of the problem based on the use of Green’s functions is developed and implemented on systems in which the operators acting on the spatial coordinates of the fields involved are diffusion-like and advection-like. It is shown that the generic behavior displays a nonanalytic structure not reducible to a power of time for short times.

Corresponding author address: Catherine Nicolis, Institut Royal Météorologique de Belgique, Avenue Circulaire 3, Brussels B-1180, Belgium. Email: cnicolis@oma.be

Abstract

The different modes of the early stages of the response of a forecasting model to a small error in the boundary conditions are analyzed. A general formulation of the problem based on the use of Green’s functions is developed and implemented on systems in which the operators acting on the spatial coordinates of the fields involved are diffusion-like and advection-like. It is shown that the generic behavior displays a nonanalytic structure not reducible to a power of time for short times.

Corresponding author address: Catherine Nicolis, Institut Royal Météorologique de Belgique, Avenue Circulaire 3, Brussels B-1180, Belgium. Email: cnicolis@oma.be

Save