• Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bühler, O., and M. E. McIntyre, 2003: Remote recoil: A new wave-mean interaction effect. J. Fluid Mech., 492 , 207230.

  • Campbell, L. J., and T. G. Shepherd, 2005: Constraints on wave drag parameterization schemes for simulating the quasi-biennial oscillation. Part I: Gravity wave forcing. J. Atmos. Sci., 62 , 41784195.

    • Search Google Scholar
    • Export Citation
  • Dameris, M., and Coauthors, 2005: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmos. Chem. Phys., 5 , 21212145.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity wave momentum dissipation in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59 , 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity wave momentum dissipation in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra and implementation. J. Atmos. Sol.-Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Lawrence, B. N., 1997: Some aspects of the sensitivity of stratospheric climate simulations to model lid height. J. Geophys. Res., 102 , 2380523811.

    • Search Google Scholar
    • Export Citation
  • Lawrence, B. N., 2001: A gravity-wave induced quasi-biennial oscillation in a three-dimensional mechanistic model. Quart. J. Roy. Meteor. Soc., 127 , 20052021.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Manzini, E., B. Steil, C. Brühl, M. A. Giorgetta, and K. Krüger, 2003: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108 .4429, doi:10.1029/2002JD002977.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1989: On dynamics and transport near the polar mesopause. J. Geophys. Res., 94 , 1461714628.

  • McLandress, C., 1998: On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Sol.-Terr. Phys., 60 , 13571383.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and N. A. McFarlane, 1993: Interactions between orographic gravity wave drag and forced stationary planetary waves in the winter Northern Hemisphere middle atmosphere. J. Atmos. Sci., 50 , 19661990.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and J. F. Scinocca, 2005: The GCM response to current parameterizations of nonorographic gravity wave drag. J. Atmos. Sci., 62 , 23942413.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34 , 18471858.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12 , 14671479.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and P. H. Haynes, 1998: Internal interannual variability of the extratropical stratospheric circulation: The low latitude flywheel. Quart. J. Roy. Meteor. Soc., 124 , 21492173.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61 , 28992908.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., K. Semeniuk, and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101 , 2344723464.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. C. Furtado, and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63 , 26162629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 49 1
PDF Downloads 73 35 0

Angular Momentum Conservation and Gravity Wave Drag Parameterization: Implications for Climate Models

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
Restricted access

Abstract

The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.

Corresponding author address: Dr. T. G. Shepherd, Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 Canada. Email: tgs@atmosp.physics.utoronto.ca

Abstract

The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.

Corresponding author address: Dr. T. G. Shepherd, Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 Canada. Email: tgs@atmosp.physics.utoronto.ca

Save