• Achatz, U., 2005: On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids, 17 .doi:10.1063/1.2046709.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006a: Shear and static instability of inertia–gravity wave packets: Short-term modal and nonmodal growth. J. Atmos. Sci., 63 , 397413.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006b: Optimal growth in inertia–gravity wave packets: Energetics, long-term development, and three-dimensional structure. J. Atmos. Sci., 63 , 414434.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø, C. E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions. 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99 , 80958108.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., P. J. Ioannou, and G. E. Kefaliakos, 2001: The emergence of coherent structures in stratified shear flow. J. Atmos. Sci., 58 , 27902806.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and G. Schmitz, 2002: Energy deposition and turbulent dissipation owing to gravity waves in the mesosphere. J. Atmos. Sci., 59 , 5468.

    • Search Google Scholar
    • Export Citation
  • Boberg, L., and U. Brosa, 1988: Onset of turbulence in a pipe. Z. Naturforschung, 43A , 697726.

  • Butler, K. M., and B. F. Farrell, 1992: Three dimensional optimal perturbations in viscous shear flow. Phys. Fluids, 4A , 16371650.

  • Drazin, P. G., 1977: On the instability of an internal gravity wave. Proc. Roy. Soc. London, 356A , 411432.

  • Dunkerton, T. J., 1997: Shear instability of internal inertia-gravity waves. J. Atmos. Sci., 54 , 16281641.

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 465 pp.

  • Ellingsen, T., and E. Palm, 1975: Stability of linear flow. Phys. Fluids, 18 , 487488.

  • Farrell, B. F., 1988a: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Farrell, B. F., 1988b: Optimal excitation of perturbations in viscous shear flow. Phys. Fluids, 31 , 20932102.

  • Farrell, B. F., and P. J. Ioannou, 1993: Transient development of perturbations in stratified shear flow. J. Atmos. Sci., 50 , 22012214.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and L. Yuan, 1989: Stability analysis of inertio–gravity wave structure in the middle atmosphere. J. Atmos. Sci., 46 , 17381745.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, and Ø Andreassen, 1994: Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99 , 81098124.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, J. H. Hecht, R. L. Walterscheid, and Ø Andreassen, 1997: Wave breaking signatures in sodium densities and OH nightglow. 2. Simulation of wave and instability structures. J. Geophys. Res., 102 , 66696684.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108 .8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, K. Wan, and J. A. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys., 68 , 247265.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., 2004: Instability layers and airglow imaging. Rev. Geophys., 42 .RG1001, doi:10.1029/2003RG000131.

  • Hecht, J. H., R. L. Walterscheid, D. C. Fritts, J. R. Isler, D. C. Senft, C. S. Gardner, and J. S. Franke, 1997: Wave breaking signatures in OH airglow and sodium densities and temperatures. 1. Airglow imaging, Na lidar, and MF radar observations. J. Geophys. Res., 102 , 66556668.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., C. Fricke-Begemann, R. L. Walterscheid, and J. Höffner, 2000: Observations of the breakdown of an atmospheric gravity wave near the cold summer mesopause at 54N. Geophys. Res. Lett., 27 , 879882.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38 , 14411481.

  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., 1978: The stratosphere and mesosphere. Quart. J. Roy. Meteor. Soc., 104 , 129.

  • Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10 , 509512.

  • Isler, J. R., D. C. Fritts, Ø Andreassen, and C. E. Wasberg, 1994: Gravity wave breaking in two and three dimensions. 3. Vortex breakdown and transition to isotropy. J. Geophys. Res., 99 , 81258138.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and W. R. Peltier, 1985: The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows. J. Fluid Mech., 155 , 135.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1982: On parametric instabilities of finite-amplitude internal gravity waves. J. Fluid Mech., 119 , 367377.

  • Klostermeyer, J., 1983: Parametric instabilities of internal gravity waves in Boussinesq fluids with large Reynolds numbers. Geophys. Astrophys. Fluid Dyn., 26 , 85105.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 61 , 125.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., and G. Schmitz, 2003: Radiating instabilities of internal inertio-gravity waves. J. Atmos. Sci., 60 , 12571269.

  • Landahl, M. T., 1980: A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech., 98 , 243251.

  • Lelong, M. P., and T. J. Dunkerton, 1998a: Inertia–gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55 , 24732488.

    • Search Google Scholar
    • Export Citation
  • Lelong, M. P., and T. J. Dunkerton, 1998b: Inertia–gravity wave breaking in three dimensions. Part II: Convectively unstable waves. J. Atmos. Sci., 55 , 24892501.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lombard, P. N., and J. R. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8 , 32713287.

    • Search Google Scholar
    • Export Citation
  • Lübken, F-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102 , 1344113456.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., 1976: The occurrence of parametric instabilities in finite amplitude internal gravity waves. J. Fluid Mech., 78 , 763784.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10 , 496508.

  • Miyazaki, T., and K. Adachi, 1998: Short-wavelength instabilities of waves in rotating stratified fluids. Phys. Fluids, 10 , 31683177.

    • Search Google Scholar
    • Export Citation
  • Moffat, H. K., 1967: The interaction of turbulence with strong shear. Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom, and V. I. Tatarskii, Eds., Nauka, 139–161.

    • Search Google Scholar
    • Export Citation
  • Müllemann, A., M. Rapp, and F-J. Lübken, 2003: Morphology of turbulence in the polar summer mesopause region during the MIDAS/SOLSTICE campaign 2001. Adv. Space Res., 31 , 20692074.

    • Search Google Scholar
    • Export Citation
  • Orr, W. M., 1907: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid. Proc. Roy. Irish Acad., 27A , 968.

    • Search Google Scholar
    • Export Citation
  • Sonmor, L. J., and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54 , 26552680.

  • Trefethen, L. N., A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, 1993: Hydrodynamic stability without eigenvalues. Science, 261 , 578584.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1994: Three-dimensional wave instability near a critical level. J. Fluid Mech., 272 , 255284.

  • Yau, K-H., G. P. Klaassen, and L. J. Sonmor, 2004: Principal instabilities of large amplitude inertio-gravity waves. Phys. Fluids, 16 , 936951.

    • Search Google Scholar
    • Export Citation
  • Yuan, L., and D. C. Fritts, 1989: Influence of a mean shear on the dynamical instability of an inertio–gravity wave. J. Atmos. Sci., 46 , 25622568.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 31 2
PDF Downloads 42 18 3

The Primary Nonlinear Dynamics of Modal and Nonmodal Perturbations of Monochromatic Inertia–Gravity Waves

View More View Less
  • 1 Leibniz-Institut für Atmosphärenphysik, Universität Rostock, Kühlungsborn, Germany
Restricted access

Abstract

The breaking of an inertia–gravity wave (IGW), initiated by its leading normal modes (NMs) or singular vectors (SVs), and the resulting small-scale eddies are investigated by means of direct numerical simulations of a Boussinesq fluid characterizing the upper mesosphere. The focus is on the primary nonlinear dynamics, neglecting the effect of secondary instabilities. It is found that the structures with the strongest impact on the IGW and also the largest turbulence amplitudes are the NM (for a statically unstable IGW) or short-term SV (statically and dynamically stable IGW) propagating horizontally transversely with respect to the IGW, possibly in agreement with observations of airglow ripples in conjunction with statically unstable IGWs. In both cases these leading structures reduce the IGW amplitude well below the static and dynamic instability thresholds. The resulting turbulent dissipation rates are within the range of available estimates from rocket soundings, even for IGWs at amplitudes low enough precluding NM instabilities. Thus SVs can help explain turbulence occurring under conditions not amenable for the classic interpretation via static and dynamic instability. Because of the important role of the statically enhanced roll mechanism in the energy exchange between IGW and eddies, the turbulent velocity fields are often conspicuously anisotropic. The spatial turbulence distribution is determined to a large degree by the elliptically polarized horizontal velocity field of the IGW.

Corresponding author address: Dr. Ulrich Achatz, Leibniz-Institut für Atmosphärenphysik, Schloßstr. 6, 18225 Kühlungsborn, Germany. Email: E-mail achatz@iap-kborn.de

Abstract

The breaking of an inertia–gravity wave (IGW), initiated by its leading normal modes (NMs) or singular vectors (SVs), and the resulting small-scale eddies are investigated by means of direct numerical simulations of a Boussinesq fluid characterizing the upper mesosphere. The focus is on the primary nonlinear dynamics, neglecting the effect of secondary instabilities. It is found that the structures with the strongest impact on the IGW and also the largest turbulence amplitudes are the NM (for a statically unstable IGW) or short-term SV (statically and dynamically stable IGW) propagating horizontally transversely with respect to the IGW, possibly in agreement with observations of airglow ripples in conjunction with statically unstable IGWs. In both cases these leading structures reduce the IGW amplitude well below the static and dynamic instability thresholds. The resulting turbulent dissipation rates are within the range of available estimates from rocket soundings, even for IGWs at amplitudes low enough precluding NM instabilities. Thus SVs can help explain turbulence occurring under conditions not amenable for the classic interpretation via static and dynamic instability. Because of the important role of the statically enhanced roll mechanism in the energy exchange between IGW and eddies, the turbulent velocity fields are often conspicuously anisotropic. The spatial turbulence distribution is determined to a large degree by the elliptically polarized horizontal velocity field of the IGW.

Corresponding author address: Dr. Ulrich Achatz, Leibniz-Institut für Atmosphärenphysik, Schloßstr. 6, 18225 Kühlungsborn, Germany. Email: E-mail achatz@iap-kborn.de

Save