Convectively Coupled Equatorial Waves. Part I: Horizontal and Vertical Structures

Gui-Ying Yang National Centre for Atmospheric Science, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Gui-Ying Yang in
Current site
Google Scholar
PubMed
Close
,
Brian Hoskins Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Brian Hoskins in
Current site
Google Scholar
PubMed
Close
, and
Julia Slingo National Centre for Atmospheric Science, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Julia Slingo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multilevel 15-yr ECMWF Re-Analysis (ERA-15) and satellite-observed brightness temperature (Tb) data for the period May–October 1992 are used to examine the horizontal and vertical structures of convectively coupled equatorial waves. Dynamical waves are isolated using a methodology developed previously. Composite structures of convectively coupled equatorial waves are obtained using linear regression/correlation between convection (Tb) and dynamical structures. It is found that the relationship depends on the ambient flow and the nature of the convective coupling, and varies between off-equatorial- and equatorial-centered convection, different hemispheres, and seasons.

The Kelvin wave structure in the Western Hemisphere is generally consistent with classic equatorial wave theory and has its convection located in the region of low-level convergence. In the Eastern Hemisphere the Kelvin wave tends to have convection in the region of enhanced lower-tropospheric westerlies and a tilted vertical structure. The Kelvin wave also tends to have a third peak in zonal wind amplitude at 500 hPa and exhibits upward propagation into the lower stratosphere. Lower-tropospheric westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave structures and their relationship with convection are consistent with classic equatorial wave theory and the implied lower-tropospheric convergences. In the Eastern Hemisphere the WMRG and R1 waves have first baroclinic mode structures in the vertical. However, in the Western Hemisphere, the R1 wave has a barotropic structure. In the Eastern Hemisphere the R1 wave, like the Kelvin wave, tends to have equatorial convection in the region of enhanced lower-level westerlies, suggesting that enhanced surface energy fluxes associated with these waves may play an important organizing role for equatorial convection in this warm-water hemisphere.

In the upper troposphere, eastward-moving Rossby–gravity (EMRG) and n = 1 gravity waves are found in the Eastern Hemisphere, and eastward-moving WMRG and R1 waves are found in the Western Hemisphere, suggestive of Doppler shifting of waves by the ambient flow.

Corresponding author address: Gui-Ying Yang, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. Email: g.y.yang@reading.ac.uk

Abstract

Multilevel 15-yr ECMWF Re-Analysis (ERA-15) and satellite-observed brightness temperature (Tb) data for the period May–October 1992 are used to examine the horizontal and vertical structures of convectively coupled equatorial waves. Dynamical waves are isolated using a methodology developed previously. Composite structures of convectively coupled equatorial waves are obtained using linear regression/correlation between convection (Tb) and dynamical structures. It is found that the relationship depends on the ambient flow and the nature of the convective coupling, and varies between off-equatorial- and equatorial-centered convection, different hemispheres, and seasons.

The Kelvin wave structure in the Western Hemisphere is generally consistent with classic equatorial wave theory and has its convection located in the region of low-level convergence. In the Eastern Hemisphere the Kelvin wave tends to have convection in the region of enhanced lower-tropospheric westerlies and a tilted vertical structure. The Kelvin wave also tends to have a third peak in zonal wind amplitude at 500 hPa and exhibits upward propagation into the lower stratosphere. Lower-tropospheric westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave structures and their relationship with convection are consistent with classic equatorial wave theory and the implied lower-tropospheric convergences. In the Eastern Hemisphere the WMRG and R1 waves have first baroclinic mode structures in the vertical. However, in the Western Hemisphere, the R1 wave has a barotropic structure. In the Eastern Hemisphere the R1 wave, like the Kelvin wave, tends to have equatorial convection in the region of enhanced lower-level westerlies, suggesting that enhanced surface energy fluxes associated with these waves may play an important organizing role for equatorial convection in this warm-water hemisphere.

In the upper troposphere, eastward-moving Rossby–gravity (EMRG) and n = 1 gravity waves are found in the Eastern Hemisphere, and eastward-moving WMRG and R1 waves are found in the Western Hemisphere, suggestive of Doppler shifting of waves by the ambient flow.

Corresponding author address: Gui-Ying Yang, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. Email: g.y.yang@reading.ac.uk

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52 , 15851601.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 , 781790.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillation in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Haertel, P. T., and G. N. Kiladis, 2004: On the dynamics of two-day equatorial disturbances. J. Atmos. Sci., 61 , 27072721.

  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60 , 156171.

  • Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby-gravity waves. J. Atmos. Sci., 48 , 21272140.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life circle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hodges, K. I., D. W. Chappell, G. J. Robison, and G-Y. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17 , 12961313.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1971: A diagnostic model for equatorial wave disturbances: The role of vertical shear of the mean zonal wind. J. Atmos. Sci., 28 , 10761080.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55 , 502526.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57 , 11971213.

  • Kasahara, A., and P. L. Silva Dias, 1986: Response of planetary waves to stationary tropical heating in g global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43 , 18931911.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120 , 19241939.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and M. Wheeler, 1995: Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 100 , 2298122997.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1970: Internal equatorial planetary-scale waves in shear flow. J. Atmos. Sci., 27 , 394407.

  • Magaña, V., and M. Yanai, 1995: Mixed Rossby-gravity waves triggered by lateral forcing. J. Atmos. Sci., 52 , 14731486.

  • Majda, A. J., and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and J. A. Biello, 2003: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 60 , 18091821.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, B. M., and C. S. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57 , 21882207.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20 , 501524.

    • Search Google Scholar
    • Export Citation
  • Pires, P., J-L. Redelsperger, and J-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125 , 11671184.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and Coauthors, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19 , 13021326.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large scale cloud disturbances associated with equatorial waves. Part II: Westward propagation of inertio-gravity waves spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K-M. Lau, and C-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124 , 18921913.

  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53 , 449467.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2006: Centered composite analysis of variations associated with the Madden–Julian oscillation. J. Climate, 19 , 18341849.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to midlatitude forcing in a zonally varying basic state. J. Atmos. Sci., 39 , 722733.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H-R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45 , 803829.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., 1997: Propagation of nonstationary Rossby waves and extratropical-tropical interaction. Ph.D thesis, University of Reading, 200 pp.

  • Yang, G-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64 , 34243437.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64 , 34383451.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

  • Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46 , 36323652.

  • Zhang, C., and M. J. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13 , 22612276.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1757 754 42
PDF Downloads 1156 240 25