Reduced Atmospheric Models Using Dynamically Motivated Basis Functions

Frank Kwasniok School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter, United Kingdom

Search for other papers by Frank Kwasniok in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nonlinear deterministic reduced models of large-scale atmospheric dynamics are constructed. The dynamical framework is a quasigeostrophic three-level spectral model with realistic mean state and variability as well as Pacific–North America (PNA) and North Atlantic Oscillation (NAO) patterns. The study addresses the problem of finding appropriate basis functions for efficiently capturing the dynamics and a comparison between different choices of basis functions; it focuses on highly truncated models, keeping only 10–15 modes. The reduced model is obtained by a projection of the equations of motion onto a truncated basis spanned by empirically determined modes. The total energy metric is used in the projection; the nonlinear terms of the low-order model then conserve total energy. Apart from retuning the coefficient of horizontal diffusion, no empirical terms are fitted in the dynamical equations of the low-order model in order to properly preserve the physics of the system. Using the methodology of principal interaction patterns (PIPs), a basis is derived that carefully compromises minimizing tendency error with maximizing explained variance in the resolved modes. A new PIP algorithm is introduced that is more compact and robust than earlier PIP algorithms; a top-down approach is adopted, removing modes from the system one by one.

The mean state and standard deviation of the streamfunction as well as transient momentum fluxes are well reproduced by a PIP model with only 10 modes. Probability density functions are accurately modeled and autocorrelation functions are captured fairly well using 15 modes. Reduced models based on PIPs are substantially superior to reduced models based on empirical orthogonal functions (EOFs). The leading PIPs have a higher projection onto the PNA and NAO teleconnection patterns than the corresponding EOFs. Both with EOFs and PIPs, the interactions between the resolved modes are predominantly linear and the improvement of PIP models on EOF models stems entirely from better modeling these linear interactions although the full nonlinear tendencies are optimized. There is considerable influence of smaller-scale modes on the large-scale modes due to nonlinear coupling that is not well captured by either EOFs or PIPs. This nonlinear backscattering possibly plays a role in generating the low-frequency variability of the model. The results call for a nonlinear and/or stochastic closure scheme in which PIPs may be suitable basis functions.

Corresponding author address: Dr. Frank Kwasniok, School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, United Kingdom. Email: f.kwasniok@exeter.ac.uk

Abstract

Nonlinear deterministic reduced models of large-scale atmospheric dynamics are constructed. The dynamical framework is a quasigeostrophic three-level spectral model with realistic mean state and variability as well as Pacific–North America (PNA) and North Atlantic Oscillation (NAO) patterns. The study addresses the problem of finding appropriate basis functions for efficiently capturing the dynamics and a comparison between different choices of basis functions; it focuses on highly truncated models, keeping only 10–15 modes. The reduced model is obtained by a projection of the equations of motion onto a truncated basis spanned by empirically determined modes. The total energy metric is used in the projection; the nonlinear terms of the low-order model then conserve total energy. Apart from retuning the coefficient of horizontal diffusion, no empirical terms are fitted in the dynamical equations of the low-order model in order to properly preserve the physics of the system. Using the methodology of principal interaction patterns (PIPs), a basis is derived that carefully compromises minimizing tendency error with maximizing explained variance in the resolved modes. A new PIP algorithm is introduced that is more compact and robust than earlier PIP algorithms; a top-down approach is adopted, removing modes from the system one by one.

The mean state and standard deviation of the streamfunction as well as transient momentum fluxes are well reproduced by a PIP model with only 10 modes. Probability density functions are accurately modeled and autocorrelation functions are captured fairly well using 15 modes. Reduced models based on PIPs are substantially superior to reduced models based on empirical orthogonal functions (EOFs). The leading PIPs have a higher projection onto the PNA and NAO teleconnection patterns than the corresponding EOFs. Both with EOFs and PIPs, the interactions between the resolved modes are predominantly linear and the improvement of PIP models on EOF models stems entirely from better modeling these linear interactions although the full nonlinear tendencies are optimized. There is considerable influence of smaller-scale modes on the large-scale modes due to nonlinear coupling that is not well captured by either EOFs or PIPs. This nonlinear backscattering possibly plays a role in generating the low-frequency variability of the model. The results call for a nonlinear and/or stochastic closure scheme in which PIPs may be suitable basis functions.

Corresponding author address: Dr. Frank Kwasniok, School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, United Kingdom. Email: f.kwasniok@exeter.ac.uk

Save
  • Achatz, U., and G. Branstator, 1999: A two-layer model with empirical linear corrections and reduced order for studies of internal climate variability. J. Atmos. Sci., 56 , 31403160.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and J. D. Opsteegh, 2003: Primitive-equation-based low-order models with seasonal cycle. Part I: Model construction. J. Atmos. Sci., 60 , 465477.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J. Atmos. Sci., 33 , 16071623.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and S. E. Haupt, 1998: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Climate, 11 , 26452667.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and J. Berner, 2005: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Phase space tendencies. J. Atmos. Sci., 62 , 17921811.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. de Vore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Crommelin, D. T., and A. J. Majda, 2004: Strategies for model reduction: Comparing different optimal bases. J. Atmos. Sci., 61 , 22062217.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2001: Extratropical low-frequency variability as a low-dimensional problem. I: A simplified model. Quart. J. Roy. Meteor. Soc., 127 , 13571374.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50 , 40444057.

  • Farrell, B. F., and P. J. Ioannou, 2001: Accurate low-dimensional approximation of the linear dynamics of fluid flow. J. Atmos. Sci., 58 , 27712789.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62 , 32503267.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., and A. J. Majda, 2006: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci., 63 , 457479.

  • Franzke, C., A. J. Majda, and E. Vanden-Eijnden, 2005: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci., 62 , 17221745.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93 , 1101511021.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., 1996: The reduction of complex dynamical systems using principal interaction patterns. Physica D, 92 , 2860.

  • Kwasniok, F., 1997a: Optimal Galerkin approximations of partial differential equations using principal interaction patterns. Phys. Rev. E, 55 , 53655375.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., 1997b: Low-dimensional models of complex systems using principal interaction patterns. Nonlinear Anal., 30 , 489494.

  • Kwasniok, F., 2001: Low-dimensional models of the Ginzburg-Landau equation. SIAM J. Appl. Math., 61 , 20632079.

  • Kwasniok, F., 2004: Empirical low-order models of barotropic flow. J. Atmos. Sci., 61 , 235245.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 1999: Models for stochastic climate prediction. Proc. Natl. Acad. Sci. USA, 96 , 1468714691.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 2003: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci., 60 , 17051722.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50 , 17921818.

  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Rinne, J., and V. Karhila, 1975: A spectral barotropic model in horizontal empirical orthogonal functions. Quart. J. Roy. Meteor. Soc., 101 , 365382.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., 1987: Predictability in the extended range. J. Atmos. Sci., 44 , 34953527.

  • Selten, F. M., 1995: An efficient description of the dynamics of barotropic flow. J. Atmos. Sci., 52 , 915936.

  • Selten, F. M., 1997: Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci., 54 , 20992114.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., G. Burger, R. Schnur, and J. S. von Storch, 1995: Principal oscillation patterns—A review. J. Climate, 8 , 377400.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784804.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55 , 237258.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56 , 34163435.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1438 1111 45
PDF Downloads 126 36 0