On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex

I. I. Rypina Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by I. I. Rypina in
Current site
Google Scholar
PubMed
Close
,
M. G. Brown Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by M. G. Brown in
Current site
Google Scholar
PubMed
Close
,
F. J. Beron-Vera Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by F. J. Beron-Vera in
Current site
Google Scholar
PubMed
Close
,
H. Koçak Departments of Computer Science and Mathematics, University of Miami, Coral Gables, Florida

Search for other papers by H. Koçak in
Current site
Google Scholar
PubMed
Close
,
M. J. Olascoaga Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by M. J. Olascoaga in
Current site
Google Scholar
PubMed
Close
, and
I. A. Udovydchenkov Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by I. A. Udovydchenkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Lagrangian dynamics of zonal jets in the atmosphere are considered, with particular attention paid to explaining why, under commonly encountered conditions, zonal jets serve as barriers to meridional transport. The velocity field is assumed to be two-dimensional and incompressible, and composed of a steady zonal flow with an isolated maximum (a zonal jet) on which two or more traveling Rossby waves are superimposed. The associated Lagrangian motion is studied with the aid of the Kolmogorov–Arnold–Moser (KAM) theory, including nontrivial extensions of well-known results. These extensions include applicability of the theory when the usual statements of nondegeneracy are violated, and applicability of the theory to multiply periodic systems, including the absence of Arnold diffusion in such systems. These results, together with numerical simulations based on a model system, provide an explanation of the mechanism by which zonal jets serve as barriers to the meridional transport of passive tracers under commonly encountered conditions. Causes for the breakdown of such a barrier are discussed. It is argued that a barrier of this type accounts for the sharp boundary of the Antarctic ozone hole at the perimeter of the stratospheric polar vortex in the austral spring.

Corresponding author address: I. I. Rypina, RSMAS/AMP, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: irypina@rsmas.miami.edu

Abstract

The Lagrangian dynamics of zonal jets in the atmosphere are considered, with particular attention paid to explaining why, under commonly encountered conditions, zonal jets serve as barriers to meridional transport. The velocity field is assumed to be two-dimensional and incompressible, and composed of a steady zonal flow with an isolated maximum (a zonal jet) on which two or more traveling Rossby waves are superimposed. The associated Lagrangian motion is studied with the aid of the Kolmogorov–Arnold–Moser (KAM) theory, including nontrivial extensions of well-known results. These extensions include applicability of the theory when the usual statements of nondegeneracy are violated, and applicability of the theory to multiply periodic systems, including the absence of Arnold diffusion in such systems. These results, together with numerical simulations based on a model system, provide an explanation of the mechanism by which zonal jets serve as barriers to the meridional transport of passive tracers under commonly encountered conditions. Causes for the breakdown of such a barrier are discussed. It is argued that a barrier of this type accounts for the sharp boundary of the Antarctic ozone hole at the perimeter of the stratospheric polar vortex in the austral spring.

Corresponding author address: I. I. Rypina, RSMAS/AMP, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: irypina@rsmas.miami.edu

Save
  • Abdullaev, S. S., 1993: Chaos and the Dynamics of Rays in Waveguide Media. Gordon and Breach, 312 pp.

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Arnold, V. I., 1963: Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv., 18 , 936.

    • Search Google Scholar
    • Export Citation
  • Arnold, V. I., V. V. Kozlov, and A. I. Neistadt, 1986: Mathematical Aspects of Classical and Celestial Mechanics. Vol. 3, Encyclopedia of Mathematical Sciencies, Springer, 291 pp.

    • Search Google Scholar
    • Export Citation
  • Balasuriya, S., 2001: Gradient evolution for potential vorticity flows. Nonlinear Processes Geophys., 8 , 253263.

  • Bowman, K. P., 1993: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res., 98 , 2301323027.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 1996: Rossby wave phase speeds and mixing barriers in the stratosphere. Part I: Observations. J. Atmos. Sci., 53 , 905916.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and N. J. Mangus, 1993: Observations of deformation and mixing of the total ozone field in the Antarctic polar vortex. J. Atmos. Sci., 50 , 29152921.

    • Search Google Scholar
    • Export Citation
  • Brown, M. G., and R. M. Samelson, 1994: Particle motion in vorticity-conserving two-dimensional incompressible flows. Phys. Fluids, 6 , 28752876.

    • Search Google Scholar
    • Export Citation
  • Bruno, A. D., 1992: On conditions for nondegeneracy in Kolmogorov’s theorem. Sov. Math. Dokl., 45 , 221225.

  • Chen, P., 1994: The permeability of the Antarctic vortex edge. J. Geophys. Res., 99 , 2056320571.

  • Chirikov, B. V., 1979: A universal instability of many-dimensional oscillator systems. Phys. Rep., 52 , 263379.

  • Chirikov, B. V., and G. M. Zaslavsky, 1972: Stochastic instability of nonlinear oscillations. Sov. Phys. Usp., 14 , 549672.

  • Dahlberg, S. P., and K. P. Bowman, 1994: Climatology of large-scale isentropic mixing in the Arctic winter stratosphere from analyzed winds. J. Geophys. Res., 99 , 2058520599.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and V. M. Gryanik, 2004: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci., 61 , 22832295.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16 , 25922603.

  • del-Castillo-Negrete, D., and P. J. Morrison, 1993: Chaotic transport by Rossby waves in shear flow. Phys. Fluids A, 5 , 948965.

  • Delshams, A., and R. de la Llave, 2000: KAM theory and a partial justification of Greene’s criterion for non-twist maps. SIAM J. Math. Anal., 31 , 12351269.

    • Search Google Scholar
    • Export Citation
  • Dritchel, D. G., P. H. Haynes, and M. E. McIntyre, 2007: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Dullin, H. R., and J. D. Meiss, 2003: Twist singularities for symplectic maps. Chaos, 13 , 116.

  • Falkovich, G., K. Gawedzki, and M. Vergassola, 2001: Particles and fields in fluid turbulence. Rev. Mod. Phys., 73 , 913975.

  • Gaidashev, D., and H. Koch, 2004: Renormalization and shearless invariant tori: Numerical results. Nonlinearity, 17 , 17131722.

  • Haller, G., 2000: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10 , 99108.

  • Haller, G., 2001: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids, 13 , 33653385.

    • Search Google Scholar
    • Export Citation
  • Haller, G., and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147 , 352370.

  • Haller, G., and G. Yuan, 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14 , 18511861.

  • Haynes, P. H., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport. 1. Stratosphere. J. Geophys. Res., 105 , 2277722794.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., D. A. Poet, and E. F. Shuckburgh, 2007: Transport and mixing in kinematic and dynamically consistent flows. J. Atmos. Sci., 64 , 36403651.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglas, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Huang, H. P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55 , 611632.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and P. A. Durbin, 1999: Perturbed vortical layers and shear sheltering. Fluid Dyn. Res., 24 , 375404.

  • Jorba, Á, and C. Simó, 1996: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal., 27 , 17041737.

  • Joseph, B., and B. Legras, 2002: Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci., 59 , 11981212.

    • Search Google Scholar
    • Export Citation
  • Juckes, N. M., and M. E. McIntyre, 1987: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature, 328 , 590596.

    • Search Google Scholar
    • Export Citation
  • Koh, T. Y., and R. A. Plumb, 2000: Lobe dynamics applied to barotropic Rossby wave breaking. Phys. Fluids, 12 , 15181528.

  • Koh, T. Y., and B. Legras, 2002: Hyperbolic lines and the stratospheric polar vortex. Chaos, 12 , 328394.

  • Kolmogorov, A. N., 1954: On the persistence of conditionally periodic motions under a small change of the Hamilton function. Dokl. Akad. Nauk SSSR, 98 , 525530. (English translation in G. Casati and J. Ford, 1979: Stochastic behavior in classical and quantum Hamiltonian systems. Lect. Notes Phys.,93, 51–56.).

    • Search Google Scholar
    • Export Citation
  • Kovalyov, S., 2000: Phase space structure and anomalous diffusion in a rotational fluid experiment. Chaos, 10 , 153165.

  • Kuo, H., 1949: Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere. J. Meteor., 6 , 105122.

  • Lefevre, F., G. P. Brasseur, I. Folkins, A. K. Smith, and P. Simon, 1994: Chemistry of the 1991–1992 stratospheric winter–3dimensional model simulations. J. Geophys. Res., 99 , 81838195.

    • Search Google Scholar
    • Export Citation
  • Lichtenberg, A. G., and M. A. Lieberman, 1983: Regular and Stochastic Motion. Springer-Verlag, 499 pp.

  • Lipps, F., 1962: The barotropic stability of the mean winds in the atmosphere. J. Fluid Mech., 12 , 397407.

  • Malhotra, N., and S. Wiggins, 1998: Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence, with applications to Rossby wave flow. J. Nonlinear Sci., 8 , 401456.

    • Search Google Scholar
    • Export Citation
  • Manfroi, A. J., and W. R. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56 , 784800.

  • McIntyre, M. E., 1989: On the Antarctic ozone hole. J. Atmos. Terr. Phys., 51 , 2943.

  • Mizuta, R., and S. Yoden, 2001: Chaotic mixing and transport barriers in an idealized stratospheric polar vortex. J. Atmos. Sci., 58 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and S. Yoden, 2002: Interannual variability of the 4-day wave and isentropic mixing inside the polar vortex in midwinter of the southern hemisphere upper stratosphere. J. Geophys. Res., 107 .4798, doi:10.1029/2001JD002037.

    • Search Google Scholar
    • Export Citation
  • Morozov, A., 2002: Degenerate resonances in hamiltonian systems with 3/2 degrees of freedom. Chaos, 12 , 539548.

  • Ngan, K., and T. G. Shepherd, 1997: Chaotic mixing and transport in Rossby wave critical layers. J. Fluid Mech., 334 , 315351.

  • Ngan, K., and T. G. Shepherd, 1999a: A closer look at chaotic advection in the stratosphere. Part I: Geometric structure. J. Atmos. Sci., 56 , 41344152.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., and T. G. Shepherd, 1999b: A closer look at chaotic advection in the stratosphere. Part II: Statistical diagnostics. J. Atmos. Sci., 56 , 41534166.

    • Search Google Scholar
    • Export Citation
  • Paparella, F., A. Babiano, C. Basdevant, A. Provenzale, and P. Tanga, 1997: A Lagrangian study of the Antarctic polar vortex. J. Geophys. Res., 102 , 67656773.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and T. D. Fairlie, 1993: Chaotic advection in the stratosphere: Implications for the dispersal of chemically perturbed air from the polar vortex. J. Geophys. Res., 98 , 1858918595.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1991: Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves. Geophys. Astrophys. Fluid Dyn., 58 , 285320.

    • Search Google Scholar
    • Export Citation
  • Poschel, J., 2001: A lecture on the classical KAM theorem. Proc. Symp. Pure Math., 69 , 707732.

  • Robinson, W. A., 1988: Analysis of LIMS data by potential vorticity inversion. J. Atmos. Sci., 45 , 23192342.

  • Russmann, H., 1989: Non-degeneracy in the perturbation theory of integrable dynamical systems. Number Theory and Dynamical Systems, M. M. Dodson, and J. A. G. Vickers, Eds., London Mathematical Society Lecture Notes Series, Vol. 134, Cambridge University, 5–18.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Koçak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007: Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability. Phys. Rev. Lett., 98 .doi:10.1103/PhysRevLett.98.104102.

    • Search Google Scholar
    • Export Citation
  • Sevryuk, M. B., 1995: KAM-stable Hamiltonians. J. Dyn. Cont. Syst., 1 , 351366.

  • Sevryuk, M. B., 2006: Partial preservation of frequencies in KAM theory. Nonlinearity, 19 , 10991140.

  • Sevryuk, M. B., 2007: Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman’s method. Discrete Contin. Dyn. Syst., 18 , 569595.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212 , 271304.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T., R. A. Plumb, and S. C. Wofsy, 2005: Preface. J. Atmos. Sci., 62 , 565566.

  • Simmons, A., M. Hortal, G. Kelley, A. McNally, A. Untch, and S. Uppala, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62 , 668689.

    • Search Google Scholar
    • Export Citation
  • Simó, C., 1998: Invariant curves of analytic perturbed nontwist area-preserving maps. Reg. Chaotic Dyn., 3 , 3. 180195.

  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37 , 275316.

  • Tuck, A. F., 1989: Synoptic and chemical evolution of the Antarctic vortex in late winter and early spring, 1987. J. Geophys. Res., 94 , 1168711737.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 1994: Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking. J. Geophys. Res., 99 , 10711088.

    • Search Google Scholar
    • Export Citation
  • Webster, C. R., and Coauthors, 1993: Chlorine chemistry on polar stratospheric cloud particles in the Antarctic winter. Science, 261 , 11301134.

    • Search Google Scholar
    • Export Citation
  • Yang, H., 1998: The central barrier, asymmetry and random phase in chaotic transport and mixing by Rossby waves in a jet. Int. J. Bifur. Chaos, 8 , 11311152.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1657 832 50
PDF Downloads 800 142 5