Characteristics and Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves in Ensemble Numerical Simulations

Hyun-Joo Choi Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hyun-Joo Choi in
Current site
Google Scholar
PubMed
Close
,
Hye-Yeong Chun Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
, and
In-Sun Song Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by In-Sun Song in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characteristics of convectively forced gravity waves are investigated through ensemble numerical simulations for various ideal and real convective storms. For ideal storm cases, single-cell-, multicell-, and supercell-type storms are considered, and for real cases, convection events observed during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) and in Indonesia are used. For each storm case, wave perturbations and the momentum flux spectrum of convective gravity waves in a control simulation with nonlinearity and cloud microphysical processes are compared with those in quasi-linear dry simulations forced by either diabatic forcing or nonlinear forcing obtained from the control simulation. In any case, gravity waves in the control simulation cannot be represented well by wave perturbations induced by a single forcing. However, when both diabatic and nonlinear forcing terms are considered, the gravity waves and their momentum flux spectrum become comparable to those in the control simulation, because of cancellation between wave perturbations by two forcing terms. These results confirm that the two forcing mechanisms of convective gravity waves proposed by previous studies based on a single convective event can be applied generally to various types of convective storms. This suggests that nonlinear forcing, as well as diabatic forcing, should be considered appropriately in parameterizations of convectively forced gravity waves.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Abstract

Characteristics of convectively forced gravity waves are investigated through ensemble numerical simulations for various ideal and real convective storms. For ideal storm cases, single-cell-, multicell-, and supercell-type storms are considered, and for real cases, convection events observed during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) and in Indonesia are used. For each storm case, wave perturbations and the momentum flux spectrum of convective gravity waves in a control simulation with nonlinearity and cloud microphysical processes are compared with those in quasi-linear dry simulations forced by either diabatic forcing or nonlinear forcing obtained from the control simulation. In any case, gravity waves in the control simulation cannot be represented well by wave perturbations induced by a single forcing. However, when both diabatic and nonlinear forcing terms are considered, the gravity waves and their momentum flux spectrum become comparable to those in the control simulation, because of cancellation between wave perturbations by two forcing terms. These results confirm that the two forcing mechanisms of convective gravity waves proposed by previous studies based on a single convective event can be applied generally to various types of convective storms. This suggests that nonlinear forcing, as well as diabatic forcing, should be considered appropriately in parameterizations of convectively forced gravity waves.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Save
  • Alexander, M. J., and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408–419.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 1805–1815.

  • Chun, H-Y., I-S. Song, and T. Horinouchi, 2005: Momentum flux spectrum of convectively forced gravity waves: Can diabatic forcing be a proxy for convective forcing? J. Atmos. Sci., 62 , 4113–4120.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., H-J. Choi, and I-S. Song, 2007: Effects of nonlinearity on convectively forced internal gravity waves: Application to a gravity wave drag parameterization. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and Coauthors, 1998: MSX satellite observations of thunderstorm- generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25 , 939–942.

    • Search Google Scholar
    • Export Citation
  • Dhaka, S. K., M. K. Yamamoto, Y. Shibagaki, H. Hashiguchi, M. Yamamoto, and S. Fukao, 2005: Convection-induced gravity waves observed by the Equatorial Atmosphere Radar (0.20°S, 100.32°E) in Indonesia. Geophys. Res. Lett., 32 .L14820, doi:10.1029/2005GL022907.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 1427–1442.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58 , 1249–1274.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. L. Deal, and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55 , 1867–1886.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 9707–9714.

  • Pandya, R. E., and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56 , 2434–2446.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 3689–3702.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463–485.

  • Song, I-S., and H-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62 , 107–124.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., H-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 1960–1980.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. J., and M. A. Hapgood, 1988: Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow. Planet. Space Sci., 36 , 975–985.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., W. C. Skamarock, M. A. Lemone, D. B. Parsons, and D. P. Jorgensen, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci., 53 , 2861–2886.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504–520.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161–193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143–165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 862 571 45
PDF Downloads 96 26 5