The Effect of Lower Stratospheric Shear on Baroclinic Instability

Matthew A. H. Wittman Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Matthew A. H. Wittman in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Charlton Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Andrew J. Charlton in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.

Corresponding author address: L. M. Polvani, 500 W. 120th Street, Room 216, Columbia University, New York, NY 10027. Email: lmp@columbia.edu

Abstract

Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.

Corresponding author address: L. M. Polvani, 500 W. 120th Street, Room 216, Columbia University, New York, NY 10027. Email: lmp@columbia.edu

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic, 489 pp.

  • Baldwin, M., and T. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Baldwin, M. P., E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, 2003: Weather from the stratosphere. Science, 301 , 317318.

  • Blumen, W., 1979: On short-wave baroclinic instability. J. Atmos. Sci., 36 , 19251933.

  • Bretherton, F., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Charlton, A. J., A. O’Neill, W. Lahoz, and A. Massacand, 2004: Sensitivity of tropospheric forecasts to stratospheric initial conditions. Quart. J. Roy. Meteor. Soc., 130 , 17711792.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Temporal growth and vertical propagation of perturbations in the winter atmosphere. Quart. J. Roy. Meteor. Soc., 129 , 15891605.

    • Search Google Scholar
    • Export Citation
  • Davies, H., and C. Bishop, 1994: Eady edge waves and rapid development. J. Atmos. Sci., 51 , 19301946.

  • Hartmann, D. L., 2000: The key role of lower-level meridional shear in baroclinic wave life cycles. J. Atmos. Sci., 57 , 389401.

  • Hartmann, D. L., and P. Zuercher, 1998: Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci., 55 , 297313.

  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and greenhouse warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97 , 14121417.

    • Search Google Scholar
    • Export Citation
  • Heifetz, E., J. Methven, B. Hoskins, and C. Bishop, 2004: The counter-propagating Rossby wave perspective on baroclinic instability. Part I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130 , 211231.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17 , 629639.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., 1970: Internal gravity waves in atmospheres with realistic dissipation and temperature. Part I: Mathematical development and propagation of waves into the thermosphere. Geophys. Fluid Dyn., 1 , 303355.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111 .D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Müller, J., 1991: Baroclinic instability in a two-layer, vertically semi-infinite domain. Tellus, 43A , 275284.

  • Pierrehumbert, R. T., and K. L. Swanson, 1995: Baroclinic instability. Annu. Rev. Fluid Mech., 27 , 419467.

  • Plumb, R. A., and K. Semeniuk, 2003: Downward migration of extratropical zonal wind anomalies. J. Geophys. Res., 108 .4223, doi:10.1029/2002JD002773.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29 .1114, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and R. K. Scott, 2004: Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett., 31 .L02115, doi:10.1029/2003GL017965.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Rivest, C., and C. Davis, 1992: Upper tropospheric synoptic-scale waves. Part I: Maintenance as Eady normal modes. J. Atmos. Sci., 49 , 21082119.

    • Search Google Scholar
    • Export Citation
  • Rivier, L., R. Loft, and L. M. Polvani, 2002: An efficient spectral dynamical core for distributed memory computers. Mon. Wea. Rev., 130 , 13841396.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Simmons, A., and B. Hoskins, 1976: Baroclinic instability on the sphere: Normal modes of the primitive and quasi-geostrophic equations. J. Atmos. Sci., 33 , 14541477.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., and B. Hoskins, 1980: Barotropic influences on the growth and decay of non-linear baroclinic waves. J. Atmos. Sci., 37 , 16791684.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61 , 17111725.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. C. Furtado, and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., L. M. Polvani, and A. J. Charlton, 2005: On the meridional structure of annular modes. J. Climate, 18 , 21192122.

  • Wittman, M. A. H., L. M. Polvani, R. K. Scott, and A. J. Charlton, 2004: Stratospheric influence on baroclinic lifecycles: Connection to the arctic oscillation. Geophys. Res. Lett., 31 .L16113, doi:10.1029/2004GL020503.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 767 334 14
PDF Downloads 451 105 12