The Influence of Time-Dependent Melting on the Dynamics and Precipitation Production in Maritime and Continental Storm Clouds

Vaughan T. J. Phillips Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
,
Andrei Pokrovsky Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Andrei Pokrovsky in
Current site
Google Scholar
PubMed
Close
, and
Alexander Khain Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Alexander Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of one maritime and four continental observed cases of deep convection are performed with the Hebrew University Cloud Model that has spectral bin microphysics. The maritime case is from observations made on 18 September 1974 during the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE). The continental storm cases are those of summertime Texas clouds observed on 13 August 1999, and green-ocean, smoky, and pyro-clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia–Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign on 1–4 October 2002. Simulations have been performed for these cases with a detailed melting scheme. This scheme allows calculation of liquid water fraction within each mass bin for the melting of graupel, hail, snowflakes, and crystals, as well as alteration of the sedimentation velocity of ice particles in the course of their melting. The results obtained with the detailed melting scheme are compared with corresponding results from simulations involving instantaneous melting at the freezing (0°C) level.

The detailed melting scheme allows penetration of ice from the freezing level down into the boundary layer by distances ranging from a few hundred meters for the numerous, smaller particles to ∼1.5 km for the largest particles, which are much scarcer. In these simulations, most of the mass of ice falling out melts over this short distance of a few hundred meters. The deepening and intensification of the layer of latent cooling enhances the convective destabilization of the troposphere. This effect is especially pronounced under continental conditions, causing significant changes in the accumulated rain amount.

Corresponding author address: Vaughan Phillips, Geophysical Fluid Dynamics Laboratory, NOAA/OAR Dept. of Commerce, Princeton Forrestal Campus, P.O. Box 308, Princeton, NJ 08540. Email: vaughan.phillips@noaa.gov

Abstract

Simulations of one maritime and four continental observed cases of deep convection are performed with the Hebrew University Cloud Model that has spectral bin microphysics. The maritime case is from observations made on 18 September 1974 during the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE). The continental storm cases are those of summertime Texas clouds observed on 13 August 1999, and green-ocean, smoky, and pyro-clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia–Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign on 1–4 October 2002. Simulations have been performed for these cases with a detailed melting scheme. This scheme allows calculation of liquid water fraction within each mass bin for the melting of graupel, hail, snowflakes, and crystals, as well as alteration of the sedimentation velocity of ice particles in the course of their melting. The results obtained with the detailed melting scheme are compared with corresponding results from simulations involving instantaneous melting at the freezing (0°C) level.

The detailed melting scheme allows penetration of ice from the freezing level down into the boundary layer by distances ranging from a few hundred meters for the numerous, smaller particles to ∼1.5 km for the largest particles, which are much scarcer. In these simulations, most of the mass of ice falling out melts over this short distance of a few hundred meters. The deepening and intensification of the layer of latent cooling enhances the convective destabilization of the troposphere. This effect is especially pronounced under continental conditions, causing significant changes in the accumulated rain amount.

Corresponding author address: Vaughan Phillips, Geophysical Fluid Dynamics Laboratory, NOAA/OAR Dept. of Commerce, Princeton Forrestal Campus, P.O. Box 308, Princeton, NJ 08540. Email: vaughan.phillips@noaa.gov

Save
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longlo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371342.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. Tatehira, R. C. Srivastava, W. Marker, and R. E. Carbone, 1969: Precipitation-induced mesoscale wind perturbations in the melting layer. Quart. J. Roy. Meteor. Soc., 95 , 544560.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and D. B. Parsons, 1996: Microphysical processes associated with intense frontal rainbands and the effect of evaporation and melting on frontal dynamics. J. Atmos. Sci., 53 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bauer, P., A. Khain, A. Pokrovsky, R. Meneghini, C. Kummerow, F. Marzano, and J. P. V. Poiares Baptista, 2000: Combined cloud-microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57 , 10821104.

    • Search Google Scholar
    • Export Citation
  • Chen, J-P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part II: Microphysical evolution of a wintertime orographic cloud. J. Atmos. Sci., 56 , 22932312.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and W. R. Cotton, 1988: The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci., 45 , 38973910.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: The melting layer of precipitation: Radar observations and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56 , 35933600.

  • Ferrier, B. S., and R. A. Houze, 1989: One-dimensional time dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46 , 330352.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1940: The formation of the 0°C-isothermal layer and fractocumulus under nimbostratus. Meteor. Z., 6 , 882888.

  • Hudson, J. G., 1993: Cloud condensational nuclei near marine cumulus. J. Geophys. Res., 98 , 26932702.

  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43 , 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and A. Pokrovsky, 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61 , 29833001.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001: Simulation of deep convective clouds with sustained supercooled liquid water down to –37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28 , 38873890.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description. J. Atmos. Sci., 61 , 29632982.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45 , 37413753.

  • Knight, C. A., L. J. Miller, and W. D. Hall, 2004: Deep convection and “first echoes” within anvil precipitation. Mon. Wea. Rev., 132 , 18771890.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. W. Moncrieff, and E. J. Zipser, 1997: Dynamical influence of microphysics in tropical squall lines: A numerical study. Mon. Wea. Rev., 125 , 21932210.

    • Search Google Scholar
    • Export Citation
  • Martins, J. A., F. L. T. Gonzalves, J. C. P. Oliveira, A. A. Costa, J. B. V. Leal Junior, and M. A. Silva Dias, 2004: Cloud condensational nuclei in clear and polluted atmospheric conditions in the Amazonian region. Proc. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, ICCP, 588–591.

  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40 , 12181227.

  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47 , 584591.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W., and R. E. Stewart, 1985: The coupling between melting and convective air motions in stratiform clouds. J. Geophys. Res., 90 , 1065910666.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., 2001: Simulations of the glaciation of a New Mexican storm cloud with an explicit microphysics model (EMM). Ph.D. thesis, University of Manchester School of Science and Technology, 199 pp.

  • Phillips, V. T. J., A. M. Blyth, P. R. A. Brown, T. W. Choularton, and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127 , 15131534.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128 , 951971.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., T. W. Choularton, A. J. Illingworth, R. J. Hogan, and P. R. Field, 2003: Simulations of the glaciation of a frontal mixed-phase cloud with the Explicit Microphysics Model. Quart. J. Roy. Meteor. Soc., 129 , 13511371.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with an Explicit Microphysics Model. I: The impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131 , 20192046.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Oxford University Press, 954 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44 , 27542763.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984a: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part II: A theoretical study for frozen drops of radius < 500 μm. J. Atmos. Sci., 41 , 374380.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984b: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part III: Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci., 41 , 381.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39 , 11851195.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part II: Effects of varying drops and ice initiation. J. Atmos. Sci., 53 , 18151837.

    • Search Google Scholar
    • Export Citation
  • Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M. O. Andreae, L. V. Gatti, and P. Artaxo, 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition-comparison of modelled and measured CCN concentrations. Atmos. Chem. Phys. Discuss., 4 , 31593225.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., P. Artaxo, J. Zhou, E. Swetlicki, and M. O. Andreae, 2002: Sensitivity of CCN spectra on chemical and physical properties of aerosol: A case study from the Amazon Basin. J. Geophys. Res., 107 .8070, doi:10.1029/2001JD000583.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to –37.5°C. Nature, 405 , 440442.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and S. R. Macpherson, 1989: Winter storm structure and melting-induced circulations. Atmos.–Ocean, 27 , 1. 523.

  • Stewart, R. E., J. D. Marwitz, J. E. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41 , 32273237.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., R. Crawford, K. K. Szeto, and D. Hudak, 1996: Horizontal aircraft passes across 0°C regions within winter storms. Atmos.–Ocean, 34 , 133159.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., and R. E. Stewart, 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54 , 689702.

  • Szeto, K. K., R. E. Stewart, and C. A. Lin, 1988: Mesoscale circulations forced by the melting of snow in the atmosphere. Part II: Application to meteorological features. J. Atmos. Sci., 45 , 16421650.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56 , 35733592.

  • Tao, W-K., J. Simpson, and S-T. Soong, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119 , 26992723.

    • Search Google Scholar
    • Export Citation
  • Turpeinen, O., and M. K. Yau, 1981: Comparison of results from a three-dimensional cloud model with statistics of radar echoes on day 261 of GATE. Mon. Wea. Rev., 109 , 14951511.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 1992: A numerical study of the diffusional growth and riming rates of ice crystals in clouds. Proc. 11th Int. Conf. on Clouds and Precipitation, Montreal, QC, Canada, ICCP, 76–77.

  • Wexler, R., R. J. Reed, and J. Honig, 1954: Atmospheric cooling by melting snow. Bull. Amer. Meteor. Soc., 35 , 4851.

  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46 , 20082025.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1988: Retrieval of thermal and microphysical variables in observed convective storms. Part II: Sensitivity of cloud processes to variation of the microphysical parameterization. J. Atmos. Sci., 45 , 10721090.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 492 144 9
PDF Downloads 342 106 6