Potential Vorticity as Meridional Coordinate

Cristiana Stan Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
and
David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamical equations of atmospheric flow are written using potential vorticity as the meridional coordinate and potential temperature as the vertical coordinate. Within this system, the atmosphere is divided into undulating tubes bounded by isentropic and constant potential vorticity surfaces, and, under adiabatic and frictionless conditions, the air moves through the tubes without penetrating through the walls.

* Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Corresponding author address: Cristiana Stan, Center for Ocean–Land–Atmosphere Studies, Suite 302, Calverton, MD 20705-3106. Email: stan@cola.iges.org

Abstract

The dynamical equations of atmospheric flow are written using potential vorticity as the meridional coordinate and potential temperature as the vertical coordinate. Within this system, the atmosphere is divided into undulating tubes bounded by isentropic and constant potential vorticity surfaces, and, under adiabatic and frictionless conditions, the air moves through the tubes without penetrating through the walls.

* Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Corresponding author address: Cristiana Stan, Center for Ocean–Land–Atmosphere Studies, Suite 302, Calverton, MD 20705-3106. Email: stan@cola.iges.org

Save
  • Allen, D. R., and N. Nakamura, 2003: Tracer equivalent latitude: A diagnostic tool for isentropic diagnostic studies. J. Atmos. Sci., 60 , 287304.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40 , 18771883.

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35 , 175185.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1957: On the maintenance of zonal mean flow. Pap. Meteor. Geophys., 8 , 3954.

  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33 , 22852291.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19 , 159172.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1969: Theory of planetary wave–zonal flow interaction. J. Atmos. Sci., 26 , 7381.

  • Eliassen, A., 1983: The Charney–Stern theory on barotropic–baroclinic instability. Pure Appl. Geophys., 121 , 563572.

  • Eliassen, A., 1987: Entropy coordinates in atmospheric dynamics. Z. Meteor., 37 , 111.

  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 , 3. 123.

  • Ertel, H., 1942: A new hydrodynamical vorticity equation. Meteor. Z., 59 , 277281.

  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic momentum equations. J. Atmos. Sci., 32 , 233242.

    • Search Google Scholar
    • Export Citation
  • Hsu, Y-J. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev., 118 , 19331959.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 2001: Atmospheric energy cycle viewed from wave–mean-flow interaction and Lagrangian mean circulation. J. Atmos. Sci., 58 , 30363052.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The global forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press. 43316.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102 , 509522.

  • Konor, C. S., and A. Arakawa, 1997: Design of an atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev., 125 , 16491673.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and I. M. Held, 1999: Potential vorticity thickness fluxes and wave–mean flow interaction. J. Atmos. Sci., 56 , 948958.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area. J. Meteor. Soc. Japan, 44 , 2583.

  • McIntyre, M. E., 1980: An introduction to the generalized Lagrangian-mean description of wave-mean flow interaction. Pure Appl. Geophys., 118 , 152176.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1995: Modified Lagrangian-mean diagnostics. Part I: Formulation and analysis of GFDL SKYHI GCM. J. Atmos. Sci., 52 , 20952108.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53 , 15241537.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1964: Adiabatic invariants for atmospheric processes. Meteor. Gidrol., 2 , 39.

  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62 , 18841900.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., I. M. Held, and S. T. Garner, 2003: Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60 , 10241040.

  • Schubert, W. H., and G. Magnusdottir, 1994: Vorticity coordinates, transformed primitive equations, and a canonical form for the balanced models. J. Atmos. Sci., 51 , 33093319.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1980: Angular momentum coordinates and their use in zonal, geostrophic motion on a hemisphere. J. Atmos. Sci., 37 , 11261132.

    • Search Google Scholar
    • Export Citation
  • Stan, C., 2005: The mean meridional circulation: A new potential-vorticity, potential-temperature perspective. Ph.D. dissertation, Colorado State University, 203 pp.

  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35 , 561571.

  • Stone, P. H., and B. Nemet, 1996: Baroclinic adjustment: A comparison between theory, observations, and models. J. Atmos. Sci., 53 , 16631674.

    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., and R. S. Lindzen, 1994: A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere. J. Atmos. Sci., 51 , 757772.

    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulations during first GARP global experiment. J. Atmos. Sci., 42 , 15651579.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 106 12
PDF Downloads 212 77 7