On the Definition of the Cloud Water Content Fluctuations and Its Effects on the Computation of a Second-Order Liquid Water Correlation

E. Bouzereau Centre d’Enseignement et de Recherche en Environnement Atmosphérique, Chatou, France

Search for other papers by E. Bouzereau in
Current site
Google Scholar
PubMed
Close
,
L. Musson-Genon Centre d’Enseignement et de Recherche en Environnement Atmosphérique, Chatou, France

Search for other papers by L. Musson-Genon in
Current site
Google Scholar
PubMed
Close
, and
B. Carissimo Centre d’Enseignement et de Recherche en Environnement Atmosphérique, Chatou, France

Search for other papers by B. Carissimo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In subgrid-scale condensation schemes of cloud models, the majority of previous authors have relied on results presented in a paper by Bougeault. In the present paper, second-order liquid water correlations are restated that differ from the former paper but are coherent with the corrigendum of Mellor. These differences are explained here through two different underlying definitions of cloud water content fluctuations; they can be summarized by whether or not unsaturated air within a grid box contributes to the eddy flux of the cloud water content. Taking into account the issue mentioned above, the “buoyancy flux” is also derived. Although the full impact of these changes has not been evaluated here, it may become important for future global cloud-resolving climate models.

Corresponding author address: Dr. Emmanuel Bouzereau, CEREA, Laboratoire Commun ENPC-EDF R&D, 6-8 avenue Blaise Pascal, Cité Descartes Champs-sur-Marne, 77455 Marne la Vallée CEDEX 2, France. Email: emmanuel.bouzereau@ensta.org

Abstract

In subgrid-scale condensation schemes of cloud models, the majority of previous authors have relied on results presented in a paper by Bougeault. In the present paper, second-order liquid water correlations are restated that differ from the former paper but are coherent with the corrigendum of Mellor. These differences are explained here through two different underlying definitions of cloud water content fluctuations; they can be summarized by whether or not unsaturated air within a grid box contributes to the eddy flux of the cloud water content. Taking into account the issue mentioned above, the “buoyancy flux” is also derived. Although the full impact of these changes has not been evaluated here, it may become important for future global cloud-resolving climate models.

Corresponding author address: Dr. Emmanuel Bouzereau, CEREA, Laboratoire Commun ENPC-EDF R&D, 6-8 avenue Blaise Pascal, Cité Descartes Champs-sur-Marne, 77455 Marne la Vallée CEDEX 2, France. Email: emmanuel.bouzereau@ensta.org

Save
  • Bechtold, P., C. Fravalo, and J. Pinty, 1992: A model of marine boundary layer cloudiness for mesoscale applications. J. Atmos. Sci., 49 , 17231744.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Cuijpers, P. Mascart, and P. Trouilhet, 1995: Modeling of trade wind cumuli with a low-order turbulence model: Toward a unified description of Cu and Sc clouds in meteorological models. J. Atmos. Sci., 52 , 455463.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1981: Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci., 38 , 24142439.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Mascart, Eds. 2000: The Meso-NH Atmospheric Simulation System: Scientific Documentation. Meteo-France. [Available online at http://www.aero.obs-mip.fr/mesonh/.].

  • Bouzereau, E., 2004: Representation des nuages chauds dans le modèle météorologique “Mercure”: Application aux panaches d’aéroréfrigérants et aux précipitations orographiques. Ph.D. thesis, University Pierre et Marie Curie, 325 pp.

  • Chen, J-M., 1991: Turbulence-scale condensation parameterization. J. Atmos. Sci., 48 , 15101512.

  • Cuijpers, J., and P. Duynkerke, 1993: Large eddy simulation of trade wind cumulus cloud. J. Atmos. Sci., 50 , 38943908.

  • Cuijpers, J., and P. Bechtold, 1995: A simple parameterization of cloud water related variables for use in boundary layer models. J. Atmos. Sci., 52 , 24862490.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., 1977a: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 356358.

  • Mellor, G., 1977b: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 356358. Corrigendum. 34 , 14831484.

  • Redelsperger, J., and G. Sommeria, 1981: Méthode de représentation de la turbulence d’échelle inférieure à la maille pour un modèle tri-dimensionnel de convection nuageuse. Bound.-Layer Meteor., 21 , 509530.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34 , 344355.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 39 5
PDF Downloads 84 31 3