Waves in a Cloudy Vortex

David A. Schecter Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
and
Michael T. Montgomery Department of Meteorology, Naval Postgraduate School, Monterey, California, and NOAA/Hurricane Research Division, Miami, Florida

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper derives a system of equations that approximately govern small-amplitude perturbations in a nonprecipitating cloudy vortex. The cloud coverage can be partial or complete. The model is used to examine moist vortex Rossby wave dynamics analytically and computationally. One example shows that clouds can slow the growth of phase-locked counter-propagating vortex Rossby waves in the eyewall of a hurricane-like vortex. Another example shows that clouds can (indirectly) damp discrete vortex Rossby waves that would otherwise grow and excite spiral inertia–gravity wave radiation from a monotonic cyclone at high Rossby number.

Corresponding author address: Dr. David Schecter, NorthWest Research Associates, 14508 NE 20th St., Bellevue, WA 98007. Email: schecter@nwra.com

Abstract

This paper derives a system of equations that approximately govern small-amplitude perturbations in a nonprecipitating cloudy vortex. The cloud coverage can be partial or complete. The model is used to examine moist vortex Rossby wave dynamics analytically and computationally. One example shows that clouds can slow the growth of phase-locked counter-propagating vortex Rossby waves in the eyewall of a hurricane-like vortex. Another example shows that clouds can (indirectly) damp discrete vortex Rossby waves that would otherwise grow and excite spiral inertia–gravity wave radiation from a monotonic cyclone at high Rossby number.

Corresponding author address: Dr. David Schecter, NorthWest Research Associates, 14508 NE 20th St., Bellevue, WA 98007. Email: schecter@nwra.com

Save
  • Abramowitz, M., and A. Stegun, 1972: Handbook of Mathematical Functions. Dover, 1046 pp.

  • Balmforth, N. J., S. G. Llewellyn Smith, and W. R. Young, 2001: Disturbing vortices. J. Fluid Mech., 426 , 95133.

  • Bassom, A. P., and A. D. Gilbert, 1998: The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech., 371 , 109140.

  • Briggs, R. J., J. D. Daugherty, and R. H. Levy, 1970: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids, 13 , 421432.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60 , 12391256.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., and K. L. Chan, 2003: Angular momentum transports by moving spiral waves. J. Atmos. Sci., 60 , 20042009.

  • Chow, K. C., K. L. Chan, and A. K. H. Lau, 2002: Generation of moving spiral bands in tropical cyclones. J. Atmos. Sci., 59 , 29302950.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 529.

  • Davidson, R. C., 1990: Physics of Nonneutral Plasmas. Addison-Wesley, 733 pp.

  • Dunkerton, T. J., 1990: Eigenfrequencies and horizontal structure of divergent barotropic instability originating in tropical latitudes. J. Atmos. Sci., 47 , 12881301.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. P. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39 , 21522158.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54 , 10141026.

  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced Rossby waves in a shallow-water primitive equation model. J. Atmos. Sci., 58 , 685706.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994a: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280 , 303334.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994b: The response of a rotating ellipse of uniform potential vorticity to gravity wave radiation. Phys. Fluids, 6 , 36943704.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., 1983: A linear analysis of multiple vortex phenomenon in simulated tornadoes. J. Atmos. Sci., 40 , 20102024.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I. Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15 , 9197.

  • Kelvin, L., 1880: On the vibrations of a columnar vortex. Phil. Mag., 10 , 155168.

  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62 , 408425.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97 , 275309.

    • Search Google Scholar
    • Export Citation
  • Michalke, A., and A. Timme, 1967: On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29 , 647666.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52 , 18291833.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory of vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55 , 21932200.

  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471 , 132.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. Bell, S. D. Aberson, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59 , 29893020.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1966: On the stability of the baroclinic circular vortex. J. Atmos. Sci., 23 , 4353.

  • Patra, R., 2004: Idealized modeling of tropical cyclones in vertical shear: The role of saturated ascent in the inner core. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 98–99.

  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Pillai, S., and R. W. Gould, 1994: Damping and trapping in 2D inviscid fluids. Phys. Rev. Lett., 73 , 28492852.

  • Plougonven, R., and V. Zeitlin, 2002: Internal gravity wave emission from a pancake vortex: An example of wave-vortex interaction in strongly stratified flows. Phys. Fluids, 14 , 12591268.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994: The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos, 4 , 177186.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and co-rotation of weak, TC-like vortices, via linear vortex Rossby waves. J. Atmos. Sci., 58 , 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Ren, S., 1999: Further results on the stability of rapidly rotating vortices in the asymmetrical balance formation. J. Atmos. Sci., 56 , 475482.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87 , 761771.

  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37 , 5587.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia-buoyancy wave emission. Phys. Fluids, 16 , 13341348.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63 , 435456.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12 , 23972412.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59 , 150168.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Zhu, 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40 , 189208.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. L., and S. N. Rasband, 1997: Damped diocotron quasi-modes of nonneutral plasmas and inviscid fluids. Phys. Plasmas, 4 , 5360.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instabilities in a generalized three-region model. J. Atmos. Sci., 59 , 24212427.

    • Search Google Scholar
    • Export Citation
  • Vladimirov, V. A., and V. F. Tarasov, 1980: Formation of a system of vortex filaments in a rotating liquid. Izv. Akad. Az. Nauk SSSr, Mekh. Zhid. i Gaza, 1 , 4451.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29 , 11941204.

  • Weske, J. R., and T. M. Rankin, 1963: Generation of secondary motions in the fields of a vortex. Phys. Fluids, 6 , 13971403.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 255 64 13
PDF Downloads 152 49 6