Intraseasonal Variability of the Zonal-Mean Extratropical Tropopause Height

Seok-Woo Son Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
,
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
, and
Steven B. Feldstein Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The physical processes that drive the fluctuations of the extratropical tropopause height are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data.

A composite zonal-mean heat budget analysis for the Northern Hemisphere winter shows that fluctuations in the extratropical tropopause height result not only from a warming of the troposphere but also from an even stronger cooling of the lower stratosphere. While the tropospheric warming is caused by a poleward eddy heat transport associated with baroclinic eddies, the stratospheric cooling is driven primarily by planetary-scale waves. The results from analyses of synoptic- and planetary-scale eddy kinetic energy and Eliassen–Palm fluxes are consistent with the planetary waves first gaining their energy within the troposphere, and then propagating vertically into the stratosphere.

For the Southern Hemisphere, while lower-stratospheric temperature anomalies still play an important role for the fluctuations in the tropopause height, the temperature anomalies are accounted for primarily by a poleward eddy heat transport associated with synoptic-scale eddies, and by diabatic heating.

These results indicate that, although the height of the extratropical tropopause is modulated by baroclinic eddies, which is consistent with existing theories, the amount of the modulation is highly influenced by stratospheric processes.

Corresponding author address: Dr. Seok-Woo Son, Department of Applied Physics and Applied Mathematics, 290 Engr. Terrace, Columbia University, New York, NY 10072. Email: sws2112@columbia.edu

Abstract

The physical processes that drive the fluctuations of the extratropical tropopause height are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data.

A composite zonal-mean heat budget analysis for the Northern Hemisphere winter shows that fluctuations in the extratropical tropopause height result not only from a warming of the troposphere but also from an even stronger cooling of the lower stratosphere. While the tropospheric warming is caused by a poleward eddy heat transport associated with baroclinic eddies, the stratospheric cooling is driven primarily by planetary-scale waves. The results from analyses of synoptic- and planetary-scale eddy kinetic energy and Eliassen–Palm fluxes are consistent with the planetary waves first gaining their energy within the troposphere, and then propagating vertically into the stratosphere.

For the Southern Hemisphere, while lower-stratospheric temperature anomalies still play an important role for the fluctuations in the tropopause height, the temperature anomalies are accounted for primarily by a poleward eddy heat transport associated with synoptic-scale eddies, and by diabatic heating.

These results indicate that, although the height of the extratropical tropopause is modulated by baroclinic eddies, which is consistent with existing theories, the amount of the modulation is highly influenced by stratospheric processes.

Corresponding author address: Dr. Seok-Woo Son, Department of Applied Physics and Applied Mathematics, 290 Engr. Terrace, Columbia University, New York, NY 10072. Email: sws2112@columbia.edu

Save
  • Barry, L., G. C. Craig, and J. Thuburn, 2000: A GCM investigation into the nature of baroclinic adjustment. J. Atmos. Sci., 57 , 11411155.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2003: The extratropical tropopause region (in German). Ph.D. dissertation, University of Munich, 98 pp.

  • Birner, T., A. Dornbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitude? Geophys. Res. Lett., 29 .1700, doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Bordi, I., A. Dell’Aquila, A. Speranza, and A. Sutera, 2002: Formula for a baroclinic adjustment theory of climate. Tellus, 54A , 260272.

    • Search Google Scholar
    • Export Citation
  • Bordi, I., A. Dell’Aquila, A. Speranza, and A. Sutera, 2004: On the mid-latitude tropopause height and the orographic-baroclinic adjustment theory. Tellus, 56 , 278286.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Dell’Aquila, A., P. M. Ruti, and A. Sutera, 2006: Effects of the baroclinic adjustment on the tropopause in the NCEP-NCAR reanalysis. Climate Dyn., 28 , 325332.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., C-P. F. Hsu, and M. E. McIntyre, 1981: Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J. Atmos. Sci., 38 , 819844.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1995: Tropopause height in baroclinic channel flow. J. Atmos. Sci., 52 , 22322241.

  • Gabriel, A., G. Schmitz, and R. Geprags, 1999: The tropopause in a 2D circulation model. J. Atmos. Sci., 56 , 40594068.

  • Gutowski, W. J., L. E. Branscome, and D. A. Stewart, 1989: Mean flow adjustment during life cycles of baroclinic waves. J. Atmos. Sci., 46 , 17241737.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., J. Scinocca, and M. Greenslade, 2001: Formation and maintenance of the extra-tropical tropopause by baroclinic eddies. Geophys. Res. Lett., 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the tropopause. J. Atmos. Sci., 39 , 412417.

  • Hoerling, M. P., T. D. Schaack, and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119 , 18161831.

  • Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126 , 22482265.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403440.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57 , 30503057.

  • Kirk-Davidoff, D. B., and R. S. Lindzen, 2000: An energy balance model based on potential vorticity homogenization. J. Climate, 13 , 431448.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1993: Baroclinic neutrality and the tropopause. J. Atmos. Sci., 50 , 11481151.

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1984: The “surf zone” in the stratosphere. J. Atmos. Terr. Phys., 46 , 825849.

  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109 .D23103, doi:10.1029/2004JD004982.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. Stanford, 1985: The observed life cycle of a baroclinic instability. J. Atmos. Sci., 42 , 13641373.

  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 .2042, doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301 , 479483.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35 , 414432.

  • Son, S-W., and S. Lee, 2007: Intraseasonal variability of the zonal mean tropical tropopause height. J. Atmos. Sci., in press.

  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35 , 561571.

  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57 , 1728.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Definition of the tropopause. WMO Bull., 6 , 136.

  • WMO, 1986: Atmospheric ozone 1985: Global ozone research and monitoring report WMO Tech. Rep. 16, Geneva, Switzerland, 392 pp.

  • Wong, S., and W-C. Wang, 2003: Tropical-extratropical connection in interannual variation of the tropopause: Comparison between NCEP/NCAR reanalysis and an atmospheric general circulation model. J. Geophys. Res., 108 .4043, doi:10.1029/2001JD002016.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 40 6
PDF Downloads 102 26 5