• Achatz, U., and J. D. Opsteegh, 2003: Primitive-equation-based low-order models with seasonal cycle. Part II: Application to complexity and nonlinearity of large-scale atmospheric dynamics. J. Atmos. Sci., 60 , 478490.

    • Search Google Scholar
    • Export Citation
  • Baur, R., 1947: Musterbeispiele europäischer Großwetterlagen. (Exemplars of European General Weather Situations). Dieterich, 35 pp.

  • Brantstator, G., and J. D. Opsteegh, 1989: Free solutions of the barotropic vorticity equation. J. Atmos. Sci., 46 , 17991814.

  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Charney, J. G., and D. M. Straus, 1980: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci., 37 , 11571176.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., J. Shukla, and K. C. Mo, 1981: Comparison of barotropic blocking theory with observation. J. Atmos. Sci., 38 , 762779.

    • Search Google Scholar
    • Export Citation
  • Corti, S., F. Molteni, and T. N. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398 , 799802.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2002: Homoclinic dynamics: A scenario for atmospheric ultralow-frequency variability. J. Atmos. Sci., 59 , 15331549.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2003: Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci., 60 , 229246.

  • Crommelin, D. T., 2004: Observed nondiffusive dynamics in large-scale atmospheric flow. J. Atmos. Sci., 61 , 23842396.

  • Crommelin, D. T., J. D. Opsteegh, and F. Verhulst, 2004: A mechanism for atmospheric regime behavior. J. Atmos. Sci., 61 , 14061419.

  • De Swart, H. E., 1989: Analysis of a six-component atmospheric spectral model: Chaos, predictability, and vacillation. Physica D, 36 , 222234.

    • Search Google Scholar
    • Export Citation
  • Dethloff, K., A. Weisheimer, A. Rinke, D. Handorf, M. V. Kurgansky, W. Jansen, P. Maab, and P. Hupfer, 1998: Climate variability in a nonlinear atmosphere-like dynamical system. J. Geophys. Res., 103 , 2595725966.

    • Search Google Scholar
    • Export Citation
  • Grebogi, C., E. Ott, and J. A. Yorke, 1982: Chaotic attractors in crisis. Phys. Rev. Lett., 48 , 15071510.

  • Grebogi, C., E. Ott, and J. A. Yorke, 1983: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D, 7 , 181200.

  • Grebogi, C., E. Ott, and J. A. Yorke, 1985: Super persistent chaotic transients. Ergodic Theor. Dyn. Syst., 5 , 341372.

  • Grebogi, C., E. Ott, F. Romeiras, and J. A. Yorke, 1987: Critical exponents for crisis-induced intermittency. Phys. Rev. A, 36 , 53655380.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., 1991: Variation of the predictability in a low-order spectral model of the atmospheric circulation. Tellus, 43A , 177190.

    • Search Google Scholar
    • Export Citation
  • Hsu, C. J., and F. Zwiers, 2001: Climate change in recurrent regimes and modes of Northern Hemisphere atmospheric variability. J. Geophys. Res., 106 , 2014520159.

    • Search Google Scholar
    • Export Citation
  • Hurrel, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., 1997: Chaotic itinerancy with preferred transition routes appearing in an atmospheric model. Physica D, 109 , 274292.

  • Itoh, H., 1999: Weather regimes, low-frequency oscillations, and principal patterns of variability: A perspective of extratropical low-frequency variability. J. Atmos. Sci., 56 , 26842705.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., and M. Kimoto, 1996: Multiple attractors and chaotic itinerancy in a quasi-geostrophic model with realistic topography: Implications for weather regimes and low-frequency variability. J. Atmos. Sci., 53 , 22172231.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1992: Spatial structure of ultra-low frequency variability of the flow in a simple atmospheric circulation model. Quart. J. Roy. Meteor. Soc., 118 , 12111233.

    • Search Google Scholar
    • Export Citation
  • James, I. N., and P. M. James, 1989: Ultra-low frequency variability in a simple atmospheric circulation model. Nature, 342 , 5355.

  • Källén, E., 1981: The nonlinear effects of orographic and momentum forcing in a low-order, barotropic model. J. Atmos. Sci., 38 , 21502163.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993a: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993b: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50 , 26452673.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., K. Ide, and M. Ghil, 2004: Weather regimes and preferred transition paths in a three-level quasigeostrophic model. J. Atmos. Sci., 61 , 568587.

    • Search Google Scholar
    • Export Citation
  • Kurgansky, M. V., 2002: Adiabatic Invariants in Large-Scale Atmospheric Dynamics. Taylor & Francis, 222 pp.

  • Kurgansky, M. V., K. Dethloff, I. A. Pisnichenko, H. Gernandt, F-M. Chmielewski, and W. Jansen, 1996: Long-term climate variability in a simple, nonlinear atmospheric model. J. Geophys. Res., 101 , 42994314.

    • Search Google Scholar
    • Export Citation
  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1968: Climatic determinism. Causes of Climatic Change, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 1–3.

  • Lorenz, E. N., 1976: Nondeterministic theories of climatic change. Quat. Res., 6 , 495506.

  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50 , 17921818.

  • Michelangeli, P., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52 , 12371256.

  • Monahan, A. H., L. Pandolfo, and J. C. Fyfe, 2001: The preferred structure of variability of the Northern Hemisphere atmospheric circulation. Geophys. Res. Lett., 28 , 10191022.

    • Search Google Scholar
    • Export Citation
  • NAG Fortran Library, 1999: Mark 19. The Numerical Algorithms Group Limited.

  • Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 1 , 130139.

  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalysis, and NCAR CCM3 simulation. J. Climate, 13 , 31523171.

    • Search Google Scholar
    • Export Citation
  • Ott, E., 1993: Chaos in Dynamical Systems. Cambridge University Press, 385 pp.

  • Palmer, T. N., 1998: Nonlinear dynamics and climate change: Rossby’s legacy. Bull. Amer. Meteor. Soc., 79 , 14111423.

  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12 , 575591.

  • Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51 , 210236.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110 , 11051145.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950a: Blocking action in the middle troposphere and its effect upon regional climate. I: An aerological study of blocking action. Tellus, 2 , 196211.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950b: Blocking action in the middle troposphere and its effect upon regional climate. II: The climatology of blocking action. Tellus, 2 , 275301.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2 , 3855.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1959: Current problems in meteorology. The Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute Press, 9–50.

  • Rossby, C. G., and H. C. Willet, 1948: The circulation of the upper troposphere and lower stratosphere. Science, 108 , 643652.

  • Selten, E. M., and G. Brantstator, 2004: Preferred regime transition routes and evidence for an unstable periodic orbit in a baroclinic model. J. Atmos. Sci., 61 , 22672282.

    • Search Google Scholar
    • Export Citation
  • Sempf, M., 2005: Nichtlineare Dynamik atmosphärischer Zirkulationsregime in einem idealisierten Modell (Nonlinear dynamics of atmospheric circulation regimes in an idealized model). Ph.D. thesis, University of Potsdam, Germany, 165 pp. [Available online at http://nbn-resolving.de/urn=urn:nbn:de:kobv:517-opus-5989.].

  • Sempf, M., K. Dethloff, D. Handorf, and M. V. Kurgansky, 2005: Idealised modelling of the northern annular mode: Orographic and thermal impacts. Atmos. Sci. Lett., 6 , 140144.

    • Search Google Scholar
    • Export Citation
  • Sempf, M., K. Dethloff, D. Handorf, and M. V. Kurgansky, 2007: Circulation regimes due to attractor merging in atmospheric models. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Shil’nikov, A., G. Nicolis, and C. Nicolis, 1995: Bifurcation and predictability analysis of a low-order atmospheric circulation model. Int. J. Bifurcation Chaos, 5 , 17011711.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Vol. 26, Chapman and Hall, 175 pp.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., 2003: Analysis and modeling of the Arctic Oscillation using a simple barotropic model with baroclinic eddy forcing. J. Atmos. Sci., 60 , 13591379.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. M. T., and H. B. Stewart, 1986: Nonlinear Dynamics and Chaos. Wiley, 376 pp.

  • Weisheimer, A., M. V. Kurgansky, K. Dethloff, and D. Handorf, 2003: Extratropical low-frequency variability in a three-level quasi-geostrophic atmospheric model with different spectral resolution. J. Geophys. Res., 108 .4171, doi:10.1029/2001JD001282.

    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust., AU-15 , 7073.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1985: Bifurcation properties of a quasi-geostrophic, barotropic low-order model with topography. J. Meteor. Soc. Japan, 63 , 535546.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 54 3
PDF Downloads 30 9 2

Toward Understanding the Dynamical Origin of Atmospheric Regime Behavior in a Baroclinic Model

View More View Less
  • 1 Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
  • | 2 Department of Geophysics, Faculty of Physics and Mathematics, University of Concepción, Concepción, Chile
Restricted access

Abstract

Dynamical mechanisms of atmospheric regime behavior are investigated in the context of a quasigeostrophic three-level T21 model of the wintertime atmospheric circulation over the Northern Hemisphere. The model, driven by realistic orography and using a thermal forcing determined by a newly developed tuning procedure, is shown to possess a reasonable climatology and to simulate the Arctic Oscillation quite realistically. It exhibits pronounced internally generated interannual and decadal variability and, in particular, circulation regimes that agree fairly well with observed ones. Two known hypotheses about the origin of regime behavior, as it occurs in the model herein are addressed: (i) multiple equilibria and (ii) chaotic itinerancy between attractor ruins. The first hypothesis is falsified at very high probability, while the second is likely to be true.

* Current affiliation: Max-Planck-Institut für Plasmaphysik, Garching, Germany

+ On leave from A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia

Corresponding author address: Mario Sempf, Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany. Email: msempf@ipp.mpg.de

Abstract

Dynamical mechanisms of atmospheric regime behavior are investigated in the context of a quasigeostrophic three-level T21 model of the wintertime atmospheric circulation over the Northern Hemisphere. The model, driven by realistic orography and using a thermal forcing determined by a newly developed tuning procedure, is shown to possess a reasonable climatology and to simulate the Arctic Oscillation quite realistically. It exhibits pronounced internally generated interannual and decadal variability and, in particular, circulation regimes that agree fairly well with observed ones. Two known hypotheses about the origin of regime behavior, as it occurs in the model herein are addressed: (i) multiple equilibria and (ii) chaotic itinerancy between attractor ruins. The first hypothesis is falsified at very high probability, while the second is likely to be true.

* Current affiliation: Max-Planck-Institut für Plasmaphysik, Garching, Germany

+ On leave from A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia

Corresponding author address: Mario Sempf, Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany. Email: msempf@ipp.mpg.de

Save