• Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204 , 185228.

  • Dupree, H., and D. J. Tetrault, 1978: Renormalized dielectric function for collisionless drift wave turbulence. Phys. Fluids, 21 , 425433.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity waves dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Herring, J. R., and R. S. Kraichnan, 1972: Comparison of some approximations for isotropic turbulence. Statistical Models and Turbulence, Lecture Notes in Physics, Vol. 12, M. Rosenblatt and C. Van Atta, Eds., Springer, 148–194.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2001: Theory of the Eulerian tail in the spectra if atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448 , 289313.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002a: Comments on the gravity-wave theory of J. Weinstock concerning dissipation induced by nonlinear effects. J. Atmos. Sci., 59 , 20242030.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002b: Nonlinearities and linearities in internal gravity waves of the atmosphere and oceans. Geophys. Astrophys. Fluid Dyn., 96 , 130.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. J., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28 , 145161.

  • Lesieur, M., 1987: Turbulence in Fluids. Martinus Nijhoff Publishers, 286 pp.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res., 100 , 2584125853.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2000: Parameterization of gravity momentum deposition based on a nonlinear theory of wave spectra. J. Atmos. Solar-Terr. Phys., 62 , 10151033.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1977: Statistical theory of turbulence. Fluid Dynamics 1973: Les Houches Summer School of Theoretical Physics, R. Balian and J. L. Peube, Eds., Gordon and Breach, 237–374.

    • Search Google Scholar
    • Export Citation
  • Pouquet, A., M. Lesieur, J. C. Andre, and C. Basdevant, 1975: Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech., 72 , 305319.

    • Search Google Scholar
    • Export Citation
  • Saffman, P., 1963: An approximate calculation of the Lagrangian auto-correlation coefficient for stationary homogeneous turbulence. Appl. Sci. Res., 11 , 245255.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., 1999: Measurement of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuation. Part II: Energy dissipation and eddy diffusion. J. Atmos. Sci., 56 , 13301343.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., and A. T. Russell, 1999: How many waves are in the gravity wave spectrum? Geophys. Res. Lett., 26 , 36173620.

  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20 , 196211.

  • Tsytovich, V. N., 1970: Nonlinear Effects in Plasmas. Plenum Press, 332 pp.

  • Van Dyke, M., 1982: An Album of Fluid Motion. Parabolic Press, 176 pp.

  • Weinstock, J., 1976a: Nonlinear theory of acoustic-gravity waves: 1. Saturation and enhanced diffusion. J. Geophys. Res., 81 , 633652.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1976b: Lagrangian–Eulerian relation and the independence approximation. Phys. Fluids, 19 , 17021711.

  • Weinstock, J., and R. S. Hyde, 1976: Nonlinear theory of acoustic-gravity waves: 2. Frequency shifts. J. Geophys. Res., 81 , 31713176.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1982: Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion. J. Atmos. Sci., 39 , 16981710.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1984: Simplified derivation of an algorithm for nonlinear gravity waves. J. Geophys. Res., 89 , 345350.

  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves, and scale-dependent diffusion. J. Atmos. Sci., 47 , 22112225.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 29 3
PDF Downloads 38 18 0

Reply to “Comments on the Gravity Wave Theory of J. Weinstock Concerning Dissipation Induced by Nonlinear Effects”

View More View Less
  • 1 Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado
  • | 2 Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada
  • | 3 Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany
Restricted access

Corresponding author address: Dr. Gary Klaassen, Dept. of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Corresponding author address: Dr. Gary Klaassen, Dept. of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Save