Reply to “Comments on the Gravity Wave Theory of J. Weinstock Concerning Dissipation Induced by Nonlinear Effects”

J. Weinstock Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

Search for other papers by J. Weinstock in
Current site
Google Scholar
PubMed
Close
,
G. P. Klaassen Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by G. P. Klaassen in
Current site
Google Scholar
PubMed
Close
, and
A. S. Medvedev Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany

Search for other papers by A. S. Medvedev in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Corresponding author address: Dr. Gary Klaassen, Dept. of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Corresponding author address: Dr. Gary Klaassen, Dept. of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Save
  • Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204 , 185228.

  • Dupree, H., and D. J. Tetrault, 1978: Renormalized dielectric function for collisionless drift wave turbulence. Phys. Fluids, 21 , 425433.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity waves dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Herring, J. R., and R. S. Kraichnan, 1972: Comparison of some approximations for isotropic turbulence. Statistical Models and Turbulence, Lecture Notes in Physics, Vol. 12, M. Rosenblatt and C. Van Atta, Eds., Springer, 148–194.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2001: Theory of the Eulerian tail in the spectra if atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448 , 289313.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002a: Comments on the gravity-wave theory of J. Weinstock concerning dissipation induced by nonlinear effects. J. Atmos. Sci., 59 , 20242030.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002b: Nonlinearities and linearities in internal gravity waves of the atmosphere and oceans. Geophys. Astrophys. Fluid Dyn., 96 , 130.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. J., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28 , 145161.

  • Lesieur, M., 1987: Turbulence in Fluids. Martinus Nijhoff Publishers, 286 pp.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res., 100 , 2584125853.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2000: Parameterization of gravity momentum deposition based on a nonlinear theory of wave spectra. J. Atmos. Solar-Terr. Phys., 62 , 10151033.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1977: Statistical theory of turbulence. Fluid Dynamics 1973: Les Houches Summer School of Theoretical Physics, R. Balian and J. L. Peube, Eds., Gordon and Breach, 237–374.

    • Search Google Scholar
    • Export Citation
  • Pouquet, A., M. Lesieur, J. C. Andre, and C. Basdevant, 1975: Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech., 72 , 305319.

    • Search Google Scholar
    • Export Citation
  • Saffman, P., 1963: An approximate calculation of the Lagrangian auto-correlation coefficient for stationary homogeneous turbulence. Appl. Sci. Res., 11 , 245255.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., 1999: Measurement of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuation. Part II: Energy dissipation and eddy diffusion. J. Atmos. Sci., 56 , 13301343.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., and A. T. Russell, 1999: How many waves are in the gravity wave spectrum? Geophys. Res. Lett., 26 , 36173620.

  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20 , 196211.

  • Tsytovich, V. N., 1970: Nonlinear Effects in Plasmas. Plenum Press, 332 pp.

  • Van Dyke, M., 1982: An Album of Fluid Motion. Parabolic Press, 176 pp.

  • Weinstock, J., 1976a: Nonlinear theory of acoustic-gravity waves: 1. Saturation and enhanced diffusion. J. Geophys. Res., 81 , 633652.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1976b: Lagrangian–Eulerian relation and the independence approximation. Phys. Fluids, 19 , 17021711.

  • Weinstock, J., and R. S. Hyde, 1976: Nonlinear theory of acoustic-gravity waves: 2. Frequency shifts. J. Geophys. Res., 81 , 31713176.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1982: Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion. J. Atmos. Sci., 39 , 16981710.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1984: Simplified derivation of an algorithm for nonlinear gravity waves. J. Geophys. Res., 89 , 345350.

  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves, and scale-dependent diffusion. J. Atmos. Sci., 47 , 22112225.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 179 113
PDF Downloads 77 21 0