Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations

John Austin NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by John Austin in
Current site
Google Scholar
PubMed
Close
,
John Wilson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by John Wilson in
Current site
Google Scholar
PubMed
Close
,
Feng Li NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Feng Li in
Current site
Google Scholar
PubMed
Close
, and
Holger Vömel CIRES, University of Colorado, Boulder, Colorado

Search for other papers by Holger Vömel in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol amounts, and sea surface temperatures are all specified in the model as time-varying fields. The results are compared with two experiments (time-slice runs) with constant forcings for the years 1960 and 2000, in which the sea surface temperatures are set to the same climatological values, aerosol concentrations are fixed at background levels, while greenhouse gas and halogen concentrations are set to the values for the relevant years.

The time-slice runs indicate an increase in stratospheric water vapor from 1960 to 2000 due primarily to methane oxidation. The age of air is found to be significantly less in the year 2000 run than the 1960 run. The transient runs from 1960 to 2005 indicate broadly similar results: an increase in water vapor and a decrease in age of air. However, the results do not change gradually. The age of air decreases significantly only after about 1975, corresponding to the period of ozone reduction. The age of air is related to tropical upwelling, which determines the transport of methane into the stratosphere. Oxidation of increased methane from enhanced tropical upwelling results in higher water vapor amounts. In the model simulations, the rate of increase of stratospheric water vapor during the period of enhanced upwelling is up to twice the long-term mean. The concentration of stratospheric water vapor also increases following volcanic eruptions during the simulations.

Corresponding author address: Dr. John Austin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542-0308. Email: john.austin@noaa.gov

Abstract

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol amounts, and sea surface temperatures are all specified in the model as time-varying fields. The results are compared with two experiments (time-slice runs) with constant forcings for the years 1960 and 2000, in which the sea surface temperatures are set to the same climatological values, aerosol concentrations are fixed at background levels, while greenhouse gas and halogen concentrations are set to the values for the relevant years.

The time-slice runs indicate an increase in stratospheric water vapor from 1960 to 2000 due primarily to methane oxidation. The age of air is found to be significantly less in the year 2000 run than the 1960 run. The transient runs from 1960 to 2005 indicate broadly similar results: an increase in water vapor and a decrease in age of air. However, the results do not change gradually. The age of air decreases significantly only after about 1975, corresponding to the period of ozone reduction. The age of air is related to tropical upwelling, which determines the transport of methane into the stratosphere. Oxidation of increased methane from enhanced tropical upwelling results in higher water vapor amounts. In the model simulations, the rate of increase of stratospheric water vapor during the period of enhanced upwelling is up to twice the long-term mean. The concentration of stratospheric water vapor also increases following volcanic eruptions during the simulations.

Corresponding author address: Dr. John Austin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542-0308. Email: john.austin@noaa.gov

Save
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Andrews, A. E., and Coauthors, 2001: Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2 O. J. Geophys. Res., 106 , 3229532314.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and N. Butchart, 2003: Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery. Quart. J. Roy. Meteor. Soc., 129 , 32253249.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and F. Li, 2006: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33 .L17807, doi:10.1029/2006GL026867.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111 .D16314, doi:10.1029/2005JD006907.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

    • Search Google Scholar
    • Export Citation
  • Boering, K. A., S. C. Wofsy, B. C. Daube, H. R. Schneider, M. Loewenstein, and J. R. Podolske, 1996: Stratospheric mean ages derived from observations of CO2 and N2 O. Science, 274 , 13401343.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and the troposphere in a changing climate. Nature, 410 , 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: A multi-model study of climate change in the Brewer-Dobson circulation. Climate Dyn., 27 , 727741.

  • Christy, J. R., R. W. Spencer, and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17 , 11531170.

    • Search Google Scholar
    • Export Citation
  • Dameris, M., and Coauthors, 2005: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmos. Chem. Phys. Discuss., 5 , 22972353.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 .D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26 , 33093312.

    • Search Google Scholar
    • Export Citation
  • Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde atmospheric temperature products for assessing climate (RAT-PAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110 .D22101, doi:10.1029/2005JD006169.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer term variability of stratospheric water vapor. J. Geophys. Res., 110 .D24108, doi:10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., D. W. Waugh, K. A. Boering, and R. A. Plumb, 1999: Evaluation of transport in stratospheric models. J. Geophys. Res., 104 , 1881518839.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 1996: Validation of measurements of water vapor from the Halogen Occultation Experiment, HALOE. J. Geophys. Res., 101 , 1020510216.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and atmospheric dehydration. Geophys. Res. Lett., 28 , 19691972.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28 , 27992802.

    • Search Google Scholar
    • Export Citation
  • Jones, R. L., and J. A. Pyle, 1984: Observations of CH4 and N2 O by the Nimbus 7 SAMS: A comparison of in situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89 , 52635279.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., and K. P. Shine, 2003: A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Climate, 16 , 35253534.

    • Search Google Scholar
    • Export Citation
  • Lean, J., J. Beer, and R. S. Bradley, 1995: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett., 22 , 31953198.

    • Search Google Scholar
    • Export Citation
  • Le Texier, H., S. Solomon, and R. R. Garcia, 1988: The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere. Quart. J. Roy. Meteor. Soc., 114 , 281295.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A “vertically Lagrangian” finite volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Oltmans, S. J., H. Vömel, D. J. Hofmann, K. Rosenlof, and D. Kley, 2000: The increase in stratospheric water vapor from balloon borne frostpoint hygrometer measurements at Washington, D.C. and Boulder, Colorado. Geophys. Res. Lett., 27 , 34533456.

    • Search Google Scholar
    • Export Citation
  • Park, J. H., M. K. W. Ko, C. H. Jackman, R. A. Plumb, J. A. Kaye, and K. H. Sage, 1999: Models and measurements intercomparison II. Tech. Memo. NASA/TM-1999-209554, 502 pp.

  • Parker, D. E., M. Gordon, D. P. N. Cullum, D. M. H. Sexton, C. K. Folland, and N. Rayner, 1997: A new global gridded radiosonde temperature data base and recent temperature trends. Geophys. Res. Lett., 24 , 14991502.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311 , 11381141.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell III, J. W. Waters, and L. Froidevaux, 1995: Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo. J. Geophys. Res., 100 , 1675316764.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61 , 21332148.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., J. M. Russell III, L. L. Gordley, J. C. Gille, and P. L. Bailey, 1984: Implications of stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment. J. Atmos. Sci., 41 , 29342945.

    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 2005: Assimilation of stratospheric meteorological and constituent observations: A review. SPARC Newsletter, No. 25, 31–37.

  • Rosenlof, K. H., and Coauthors, 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28 , 11951198.

    • Search Google Scholar
    • Export Citation
  • Russell III, J. M., A. F. Tuck, L. L. Gordley, J. H. Park, S. R. Drayson, J. E. Harries, R. J. Cicerone, and P. J. Crutzen, 1993: The Halogen Occultation Experiment. J. Geophys. Res., 98 , 1077710797.

    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2003: Chemical kinetics and photochemical data for use in atmospheric studies. Tech. Rep. evaluation number 14, JPL Publication 02-25, 334 pp.

  • Santer, B. D., J. E. Penner, and P. W. Thorne, 2006: How well can the observed vertical temperature changes be reconciled with our understanding of the causes of these changes? Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. T. R. Karl et al., Eds., Tech. Rep., U.S. Climate Change Science Program and the Subcommittee on Global Change Research, NOAA, NCDC, x+164 pp.

  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98 , 2298722994.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M., A. R. Douglass, B. Polansky, C. Boone, K. A. Walker, and P. Bernath, 2005: Estimation of stratospheric age spectrum from chemical tracers. J. Geophys. Res., 110 .D21303, doi:10.1029/2005JD006125.

    • Search Google Scholar
    • Export Citation
  • Seidel, D., R. J. Ross, J. K. Angel, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106 , 78577878.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., H. Claude, U. Köhler, and K. P. Hoinka, 1998: Correlations between tropopause height and total ozone: Implications for long-term changes. J. Geophys. Res., 103 , 1918319192.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., I. Kirchner, A. Robock, H-F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103 , 1383713857.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., and L. R. Poole, 1997: A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994. J. Geophys. Res., 102 , 89678976.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and X. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57 , 1728.

  • Waugh, D. W., and T. M. Hall, 2002: Age of stratospheric air: Theory, observations and models. Rev. Geophys., 40 .1010, doi:10.1029/2000RG000101.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1456 917 447
PDF Downloads 554 170 7