• Alexander, M. J., T. Tsuda, and R. A. Vincent, 2002: Latitudinal variations observed in gravity waves with short vertical wavelengths. J. Atmos. Sci., 59 , 13941404.

    • Search Google Scholar
    • Export Citation
  • Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 , 13271350.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 18051815.

  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61 , 324337.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51 , 37913806.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2003: Equatorward propagation of inertia–gravity waves due to steady and intermittent wave sources. J. Atmos. Sci., 60 , 14101419.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., I-S. Song, J-J. Baik, and Y-J. Kim, 2004: Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. J. Climate, 17 , 35303547.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., I. Hirota, and W. K. Hocking, 1995: Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quart. J. Roy. Meteor. Soc., 121 , 149186.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109 .D20103, doi:10.1029/2004JD004752.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and J. C. Gille, 1994: Gravity wave variance in LIMS temperatures. Part I: Variability and comparison with background winds. J. Atmos. Sci., 51 , 24612483.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., and P. A. Arkin, 1991: Rainfall variations in the tropics during 1986–1989 as estimated from observations of cloud-top temperature. J. Geophys. Res., 96 , 33593373.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., B. Wang, K. Goya, K. Hocks, S. D. Eckermann, J. Ma, D. L. Wu, and W. G. Read, 2004: Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. J. Geophys. Res., 109 .D03111, doi:10.1029/2003JD003756.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karoly, D. J., G. L. Roff, and M. J. Reeder, 1996: Gravity wave activity associated with tropical convection detected in TOGA COARE sounding data. Geophys. Res. Lett., 23 , 261264.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52 , 19591984.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., M. J. Alexander, and D. L. Wu, 2000: Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res., 105 , 1194711968.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57 , 34613487.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and P. D. Sardeshmukh, 2002: Local time- and space scales of organized tropical deep convection. J. Climate, 15 , 27752790.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., H. H. Hendon, K. Woodberry, and K. H. Tanaka, 1991: Analysis of global cloud imagery from multiple satellites. Bull. Amer. Meteor. Soc., 72 , 467480.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey, 2003: Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause. J. Climate, 16 , 34283446.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., 2005: Convectively forced internal gravity waves and their parameterization in large-scale models. Ph.D. dissertation, Yonsei University, 217 pp.

  • Song, I-S., and H-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62 , 107124.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., H-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 19601980.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K., K. Woodberry, H. Hendon, and M. Salby, 1991: Assimilation of global cloud imagery from multiple satellites. J. Atmos. Oceanic Technol., 8 , 613626.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105 , 72577274.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. V. Ratnam, P. T. May, M. J. Alexander, R. A. Vincent, and A. MacKinnon, 2004: Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment). J. Geophys. Res., 109 .D20S03, doi:10.1029/2004JD004946.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and M. J. Alexander, 2000: Gravity-waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res., 105 , 1797117982.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and J. W. Waters, 1996: Gravity-wave-scale temperature fluctuations seen by the UARS MLS. Geophys. Res. Lett., 23 , 32893292.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Latitudinal Variations of the Convective Source and Propagation Condition of Inertio-Gravity Waves in the Tropics

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 2 Remote Sensing Systems, Santa Rosa, California
Restricted access

Abstract

Latitudinal variations of the convective source and vertical propagation condition of inertio-gravity waves (IGWs) in the tropical region (30°S–30°N) are examined using high-resolution Global Cloud Imagery (GCI) and 6-hourly NCEP–NCAR reanalysis data, respectively, for 1 yr (March 1985–February 1986). The convective source is estimated by calculating the deep convective heating (DCH) rate using the brightness temperature of the GCI data. The latitudinal variation of DCH is found to be significant throughout the year. The ratio of the maximum to minimum values of DCH in the annual mean is 3.2 and it is much larger in the JuneAugust (JJA) and December–February (DJF) means. Spectral analyses show that DCH has a dominant period of 1 day, a zonal wavelength of about 1600 km, and a Gaussian-type phase-speed spectrum with a peak at the zero phase speed.

The vertical propagation condition of IGWs is determined, in the zonal wavenumber and frequency domain, by two factors: (i) latitude, which determines the Coriolis parameter, and (ii) the basic-state wind structure in the target height range of wave propagation. It was found that the basic-state wind significantly influences the wave propagation condition in the lower stratosphere between 150 and 30 hPa, and accordingly a large portion of the source spectrum is filtered out. This is prominent not only in the latitudes higher than 15° where strong negative shear exists, but also near the equator where strong positive shear associated with the westerly phase of the quasi-biennial oscillation (QBO) filters out large portions of the low-frequency components of the convective source. There is no simple relationship between the ground-based frequency and latitude; lower latitudes are not always favorable for low-frequency IGWs to be observed in the stratosphere. The basic-state wind in the Tropics, which has seasonal, annual, and interannual variations, plays a major role not only in determining the wave propagation condition in the stratosphere but also in producing convective sources in the troposphere.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Abstract

Latitudinal variations of the convective source and vertical propagation condition of inertio-gravity waves (IGWs) in the tropical region (30°S–30°N) are examined using high-resolution Global Cloud Imagery (GCI) and 6-hourly NCEP–NCAR reanalysis data, respectively, for 1 yr (March 1985–February 1986). The convective source is estimated by calculating the deep convective heating (DCH) rate using the brightness temperature of the GCI data. The latitudinal variation of DCH is found to be significant throughout the year. The ratio of the maximum to minimum values of DCH in the annual mean is 3.2 and it is much larger in the JuneAugust (JJA) and December–February (DJF) means. Spectral analyses show that DCH has a dominant period of 1 day, a zonal wavelength of about 1600 km, and a Gaussian-type phase-speed spectrum with a peak at the zero phase speed.

The vertical propagation condition of IGWs is determined, in the zonal wavenumber and frequency domain, by two factors: (i) latitude, which determines the Coriolis parameter, and (ii) the basic-state wind structure in the target height range of wave propagation. It was found that the basic-state wind significantly influences the wave propagation condition in the lower stratosphere between 150 and 30 hPa, and accordingly a large portion of the source spectrum is filtered out. This is prominent not only in the latitudes higher than 15° where strong negative shear exists, but also near the equator where strong positive shear associated with the westerly phase of the quasi-biennial oscillation (QBO) filters out large portions of the low-frequency components of the convective source. There is no simple relationship between the ground-based frequency and latitude; lower latitudes are not always favorable for low-frequency IGWs to be observed in the stratosphere. The basic-state wind in the Tropics, which has seasonal, annual, and interannual variations, plays a major role not only in determining the wave propagation condition in the stratosphere but also in producing convective sources in the troposphere.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Save