• Alexander, M. J., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res., 103 , 86278640.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., and K. Rosenlof, 1996: Nonstationary gravity wave forcing of the stratospheric zonal mean wind. J. Geophys. Res., 101 , 2346523474.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., T. Tsuda, and R. Vincent, 2002: On the latitudinal variations observed in gravity waves with short vertical wavelengths. J. Atmos. Sci., 59 , 13941404.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., J. Richter, and B. Sutherland, 2006: Generation and trapping of gravity waves from convection with comparison to parameterization. J. Atmos. Sci., 63 , 29632977.

    • Search Google Scholar
    • Export Citation
  • Aumann, H., and R. Pagano, 1994: Atmospheric infrared sounder on Earth observing system. Opt. Eng., 33 , 776784.

  • Aumann, H., D. Gregorich, S. Gaiser, D. Hagan, R. Pagano, L. Strow, and D. Ting, 2000: AIRS algorithm theoretical basis document, level 1B, part 1: Infrared spectrometer. 70 pp. [Available online at http://eospso.gsfc.nasa.gov/eosvhomepage/forvscientists/atbd/.].

  • Aumann, H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., M. Schoeberl, L. Lait, P. Newman, and B. Gary, 1990: ER-2 mountain wave encounter over Antarctica: Evidence for blocking. Geophys. Res. Lett., 17 , 8184.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., P. Newman, B. Gary, and K. Chan, 1994: An algorithm for forecasting mountain wave-related turbulence in the stratosphere. Wea. Forecasting, 9 , 241253.

    • Search Google Scholar
    • Export Citation
  • Beres, J., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 18051815.

  • Carslaw, K., and Coauthors, 1998: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature, 391 , 675678.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., I-S. Song, J-J. Baik, and Y-J. Kim, 2004: Impact of a convectively forced gravity wave parameterization in NCAR CCM3. J. Climate, 17 , 35303547.

    • Search Google Scholar
    • Export Citation
  • Dewan, E., and Coauthors, 1998: MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25 , 939942.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., T. Birner, A. Fix, H. Flentje, A. Meister, H. Schmid, E. Browell, and M. Mahoney, 2002: Evidence for inertia-gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res., 107 .8287, doi:10.1029/2001JD000452.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Eckermann, S., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 15341537.

  • Eckermann, S., A. Dörnbrack, S. Vosper, H. Flentje, M. Mahoney, T. Bui, and K. Carslaw, 2006: Mountain wave-induced polar stratospheric cloud forecasts for aircraft science flights during SOLVE/THESEO 2000. Wea. Forecasting, 21 , 4268.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. J. Alexander, and C. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109 .D20103, doi:10.1029/2004JD004752.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and J. C. Gille, 1994: Gravity wave variance in LIMS temperatures. Part I: Variability and comparison with background winds. J. Atmos. Sci., 51 , 24612483.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Coauthors, 2003: Detailed modeling of mountain wave PSCs. Atmos. Chem. Phys., 3 , 697712.

  • Gille, J., and Coauthors, 1994: High Resolution Dynamics Limb Sounder (HIRDLS) for the Earth Observing System. Proc. SPIE, 2266 , 330339.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 .1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and M. J. Alexander, 1999: Gravity waves in the mesosphere generated by tropospheric convection. Tellus, 51A–B , 4558.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., L. Pfister, A. Ackerman, A. Tabazadeh, and O. Toon, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res., 106 , 1723717252.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, and J. Ma, 2004: A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. J. Geophys. Res., 109 .D03107, doi:10.1029/2003JD003974.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. Eckermann, and H-Y. Chun, 2003: An overview of the past, present, and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44 , 17751800.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., M. J. Alexander, and D. Wu, 2000: Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res., 105 , D9. 1194711967.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Coauthors, 2000: The GCM–Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81 , 781796.

    • Search Google Scholar
    • Export Citation
  • Picard, R., E. Dewan, J. Brown, R. O’Neil, J. Winick, A. Blumberg, and P. Wintersteiner, 2002: Structure of radiance from an atmosphere perturbed by superposed gravity waves. Proc. SPIE, 4882 , 149161.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., S. Eckermann, and D. Offermann, 2000: Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments. Geophys. Res. Lett., 27 , 38773880.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russell, 1988: The GISS global climate-middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45 , 329370.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind, 2001: Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106 , 71937210.

    • Search Google Scholar
    • Export Citation
  • Stockwell, R., L. Mansinha, and R. Lowe, 1996: Localisation of the complex spectrum: The S-transform. J. Assoc. Explor. Geophys., 17 , 3. 99114.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. Nishida, C. Rocken, and R. Ware, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105 , D6. 72577274.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. A. Geller, 2003: Morphology of gravity wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J. Geophys. Res., 108 .4489, doi:10.1029/2002JD002786.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., 2004: Mesoscale gravity wave variances from AMSU-A radiances. Geophys. Res. Lett., 31 .L12114, doi:10.1029/2004GL019562.

  • Wu, D. L., and J. W. Waters, 1996a: Gravity-wave-scale temperature fluctuations seen by the UARS MLS. Geophys. Res. Lett., 23 , 32893292.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and J. W. Waters, 1996b: Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophys. Res. Lett., 23 , 36313634.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and J. H. Jiang, 2002: MLS observation of gravity waves over Antarctica. J. Geophys. Res., 107 .4773, doi:10.1029/2002JD002390.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 11 11 11

Using Satellite Observations to Constrain Parameterizations of Gravity Wave Effects for Global Models

View More View Less
  • 1 Colorado Research Associates, Division of NorthWest Research Associates, Boulder, Colorado
  • | 2 NOAA/NESDIS/STAR, Camp Springs, Maryland
Restricted access

Abstract

Small-scale gravity waves are common features in atmospheric temperature observations. In satellite observations, these waves have been traditionally difficult to resolve because the footprint or resolution of the measurements precluded their detection or clear identification. Recent advances in satellite instrument resolution coupled to innovative analysis techniques have led in the last decade to some new global datasets describing the temperature variance associated with these waves. Such satellite observations have been considered the best hope for quantifying the global properties of gravity waves needed to constrain parameterizations of their effects for global models. Although global maps of averaged gravity wave temperature variance have now been published from a variety of different instruments on Earth-orbiting platforms these maps have not provided the needed constraints. The present paper first summarizes what has been learned from traditional temporally and spatially averaged analyses of satellite gravity wave observations and why new analysis methods are needed. Then an alternative is offered to these traditional analyses that recognizes the fact that the waves occur in large-amplitude events, or wave packets, that can be analyzed individually and in a statistical sense with probability density functions. For this purpose the authors present some examples of the occurrence of short-horizontal-scale waves appearing in Atmospheric Infrared Sounder (AIRS) radiance measurements and present statistics on the wave properties compiled over 1 month of data for a geographic region over Patagonia, South America.

Corresponding author address: M. J. Alexander, Colorado Research Associates, Division of NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. Email: alexand@cora.nwra.com

Abstract

Small-scale gravity waves are common features in atmospheric temperature observations. In satellite observations, these waves have been traditionally difficult to resolve because the footprint or resolution of the measurements precluded their detection or clear identification. Recent advances in satellite instrument resolution coupled to innovative analysis techniques have led in the last decade to some new global datasets describing the temperature variance associated with these waves. Such satellite observations have been considered the best hope for quantifying the global properties of gravity waves needed to constrain parameterizations of their effects for global models. Although global maps of averaged gravity wave temperature variance have now been published from a variety of different instruments on Earth-orbiting platforms these maps have not provided the needed constraints. The present paper first summarizes what has been learned from traditional temporally and spatially averaged analyses of satellite gravity wave observations and why new analysis methods are needed. Then an alternative is offered to these traditional analyses that recognizes the fact that the waves occur in large-amplitude events, or wave packets, that can be analyzed individually and in a statistical sense with probability density functions. For this purpose the authors present some examples of the occurrence of short-horizontal-scale waves appearing in Atmospheric Infrared Sounder (AIRS) radiance measurements and present statistics on the wave properties compiled over 1 month of data for a geographic region over Patagonia, South America.

Corresponding author address: M. J. Alexander, Colorado Research Associates, Division of NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. Email: alexand@cora.nwra.com

Save